Electrostatics is a branch of physics that studies slow-moving or stationary electric charges.
Since classical times, it has been known that some materials, such as amber, attract lightweight particles after rubbing. The Greek word for amber, ἤλεκτρον (), was thus the source of the word 'electricity'. Electrostatic phenomena arise from the forces that electric charges exert on each other. Such forces are described by Coulomb's law.
There are many examples of electrostatic phenomena, from those as simple as the attraction of plastic wrap to one's hand after it is removed from a package, to the apparently spontaneous explosion of grain silos, the damage of electronic components during manufacturing, and photocopier & laser printer operation. Electrostatic forces play a large role at the nanoscale; for instance, the force between an electron and a proton, which together make up a hydrogen atom, is about 36 orders of magnitude stronger than the gravitational force acting between them. Because they are large at small scales, Coulomb forces between electrons and the positively charged nuclei play a very large role in how atoms and molecules behave.
Coulomb's law
Coulomb's law states that:
'The magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them.'
The force is along the straight line joining them. If the two charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.
If is the distance (in meters) between two charges, then the force (in newtons) between two point charges and (in coulombs) is:
where ε0 is the vacuum permittivity, or permittivity of free space:
The SI units of ε0 are equivalently A2⋅s4 ⋅kg−1⋅m−3 or C2⋅N−1⋅m−2 or F⋅m−1. The Coulomb constant is:
A single proton has a charge of e, and the electron has a charge of −e, where,
These physical constants (ε0, ke, e) are currently defined so that e is exactly defined, and ε0 and ke are measured quantities.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The debye (symbol: D) (dɛˈbaɪ; dəˈbɛiə) is a CGS unit (a non-SI metric unit) of electric dipole moment named in honour of the physicist Peter J. W. Debye. It is defined as e-18 statcoulomb-centimeters. Historically the debye was defined as the dipole moment resulting from two charges of opposite sign but an equal magnitude of 10−10 statcoulomb (generally called e.s.u. (electrostatic unit) in older scientific literature), which were separated by 1 ångström. This gave a convenient unit for molecular dipole moments.
In electromagnetism, electric flux is the measure of the electric field through a given surface, although an electric field in itself cannot flow. The electric field E can exert a force on an electric charge at any point in space. The electric field is the gradient of the potential. An electric charge, such as a single electron in space, has an electric field surrounding it. In pictorial form, this electric field is shown as a dot, the charge, radiating "lines of flux". These are called Gauss lines.
Thermal shock is a phenomenon characterized by a rapid change in temperature that results in a transient mechanical load on an object. The load is caused by the differential expansion of different parts of the object due to the temperature change. This differential expansion can be understood in terms of strain, rather than stress. When the strain exceeds the tensile strength of the material, it can cause cracks to form and eventually lead to structural failure.
Active in piezoelectric, MEMS and thin film. Piemacs is a leading expert in piezoelectric MEMS, offering innovative solutions for integrating thin film layers into MEMS devices.
The course covers the fundaments of bioelectronics and integrated microelectronics for biomedical and implantable systems. Issues and trade-offs at the circuit and systems levels of invasive microelec
In physics, electromagnetism is an interaction that occurs between particles with electric charge via electromagnetic fields. The electromagnetic force is one of the four fundamental forces of nature. It is the dominant force in the interactions of atoms and molecules. Electromagnetism can be thought of as a combination of electrostatics and magnetism, two distinct but closely intertwined phenomena.
Analogue electronics (analog electronics) are electronic systems with a continuously variable signal, in contrast to digital electronics where signals usually take only two levels. The term "analogue" describes the proportional relationship between a signal and a voltage or current that represents the signal. The word analogue is derived from the word ανάλογος n(analogos) meaning "proportional". Analogue signal An analogue signal uses some attribute of the medium to convey the signal's information.
An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances, capacitances). An electrical circuit is a network consisting of a closed loop, giving a return path for the current. Thus all circuits are networks, but not all networks are circuits (although networks without a closed loop are often imprecisely referred to as "circuits").
Transient electronics have emerged as a new category of devices that can degrade after their functional lifetime, offering tremendous potential as disposable sensors, actuators, wearables, and implants. Additive manufacturing methods represent a promising ...
Solid-state transformers with input-series outputparallel structures are being considered for a variety of applications requiring MVAC to LVDC conversion. Due to the singlephase AC/DC conversion at the input side, all floating cells of the solid-state tran ...
Materials with field-tunable polarization are of broad interest to condensed matter sciences and solid-state device technologies. Here, using hydrogen (H) donor doping, we modify the room temperature metallic phase of a perovskite nickelate NdNiO3 into an ...