Publication

High-Temperature Ammonolysis of Thin Film Ta2O5 Photoanodes: Evolution of Structural, Optical, and Photoelectrochemical Properties

Ali Dabirian
2015
Article
Résumé

Tantalum nitride (Ta3N5) and oxynitride (TaON) are promising materials for photoelectrochemical (PEC) water splitting due to near-ideal band gaps and band edge positions. However, the high-temperature ammonolysis process that is usually used to make these materials depends sensitively on the process parameters and specific design of the annealing system, and reproducing highly efficient (oxy)nitride photoanodes from recipes reported by other laboratories has proven to be challenging. To understand and monitor the nitridation process in more detail, we employ an optical absorption spectroscopy technique that allows us to follow the transformation of thin Ta2O5 films in situ at temperatures up to 800 degrees C. Our results show that the incorporation of nitrogen in a dry ammonia atmosphere starts at 575 degrees C and is accompanied by a gradual red-shift of the Ta2O5 absorption edge and an expansion of the lattice due to the larger ionic radius of N-3 relative to O-2. Although coloration of the material due to an N-2p ? Ta-3d transition occurs readily, the films do not show any visible-light PEC activity until the nitrogen concentration is high enough to form a continuous N-2p impurity band. Ta3N5 is found to be the only thermodynamically stable phase between 575 and 800 degrees C, with no traces of TaON. Longer nitridation times result in lower defect concentrations, larger grain sizes, and improved PEC performance. The photocurrent of well-crystallized films is limited by slow water oxidation kinetics. This can be effectively remedied by depositing IrO2 nanoparticles as a water oxidation cocatalyst, which results in external quantum efficiencies of up to 45%. The smaller enhancement of the PEC performance at longer wavelengths reveals that hole transport in Ta3N5 limits the water splitting performance of IrO2-catalyzed Ta3N5 photoanodes.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (34)
Cellule photoélectrochimique
Une cellule photoélectrochimique utilise la lumière et des réactions chimiques pour produire de l'électricité. C'est un composant électronique qui, exposé à la lumière (photon), décompose l'eau en oxygène et hydrogène. On peut ensuite utiliser cet hydrogène dans des piles à combustible ou des moteurs à hydrogène. Une telle cellule photoélectrochimique est formée d'une électrode photosensible immergée dans un électrolyte ou dans de l'eau.
Craquage de l'eau par photocatalyse
Le craquage de l'eau par photocatalyse est l'utilisation de photons suffisamment énergétiques pour craquer les molécules d'eau en les clivant de manière électrochimique afin de produire hydrogène et oxygène , selon une réaction chimique qui s'écrit simplement : 2 + 4 hν ⟶ 2 + , l'énergie minimale des photons incidents étant . Une telle réaction a été décrite pour la première fois en 1972 pour des longueurs d'onde inférieures à .
Électrolyse de l'eau
L'électrolyse de l'eau est un procédé électrolytique qui décompose l'eau (HO) en dioxygène et dihydrogène gazeux grâce à un courant électrique. La cellule électrolytique est constituée de deux électrodes immergées dans un électrolyte (ici l'eau elle-même) et connectées aux pôles opposés de la source de courant continu. vignette|Schéma du voltamètre d'Hoffmann utilisé pour l'électrolyse de l'eau. vignette|Schéma fonctionnel de l’électrolyse.
Afficher plus
Publications associées (36)

Engineering of PEM-PEC photocathodes for solar-driven hydrogen production

Marina Caroline Michèle Caretti

Earth has always been in perpetual evolution, but today we must face its rapid change due to human activity. The intensification of industrial activities and transportation to support our modern lifestyles are the main causes of climate change and the adve ...
EPFL2022

Multiple Effects Induced by Mo6+ Doping in BiVO4 Photoanodes

Kevin Sivula, Charles Roger Jean Lhermitte, Nukorn Plainpan, Annalisa Polo, Ivan Grigioni

Mo6+ doping increases the photoelectrochemical performance of BiVO4 photoanodes in water oxidation. Herein, the underlying mechanisms is elucidated through a systematic structural, morphological, and photoelectrochemical investigation on photoelectrodes of ...
WILEY-V C H VERLAG GMBH2022

Novel Interfacial Characterization and Surface Engineering in Semiconductor Electrodes for Optimized Solar Fuel Production

Yongpeng Liu

Harvesting sunlight, the ultimate renewable power source, in a cost-effective way has been long recognized as a necessary route to meet the global energy challenges. Solar energy can be transformed into electricity by means of photovoltaic devices to suppl ...
EPFL2021
Afficher plus
MOOCs associés (9)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.