Publication

Hubble Frontier Fields: the geometry and dynamics of the massive galaxy cluster merger MACSJ0416.1-2403

Abstract

We use a joint optical/X-ray analysis to constrain the geometry and history of the ongoing merging event in the massive galaxy cluster MACSJ0416.1-2403 (z = 0.397). Our investigation of cluster substructure rests primarily on a combined strong-and weak-lensing mass reconstruction based on the deep, high-resolution images obtained for the Hubble Frontier Fields initiative. To reveal the system's dynamics, we complement this lensing analysis with a study of the intracluster gas using shallow Chandra data, and a three-dimensional model of the distribution and motions of cluster galaxies derived from over 100 spectroscopic redshifts. The multiscale grid model obtained from our combined lensing analysis extends the high-precision strong-lensing mass reconstruction recently performed to cluster-centric distances of almost 1 Mpc. Our analysis detects the two well-known mass concentrations in the cluster core. A pronounced offset between collisional and collisionless matter is only observed for the SW cluster component, while excellent alignment is found for the NE cluster. Both the lensing analysis and the distribution of cluster light strongly suggest the presence of a third massive structure, almost 2 arcmin SW of the cluster centre. Since no X-ray emission is detected in this region, we conclude that this structure is non-virialized and speculate that it might be part of a large-scale filament almost aligned with our line of sight. Combining all evidence from the distribution of dark and luminous matter, we propose two alternative scenarios for the trajectories of the components of MACSJ0416.1-2403. Upcoming deep X-ray observations that allow the detection of shock fronts, cold cores, and sloshing gas (all key diagnostics for studies of cluster collisions) will allow us to test, and distinguish between these two scenarios.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Globular cluster
A globular cluster is a spheroidal conglomeration of stars. Globular clusters are bound together by gravity, with a higher concentration of stars towards their centers. They can contain anywhere from tens of thousands to many millions of member stars. Their name is derived from Latin globulus (small sphere). Globular clusters are occasionally known simply as "globulars". Although one globular cluster, Omega Centauri, was observed in antiquity and long thought to be a star, recognition of the clusters' true nature came with the advent of telescopes in the 17th century.
Open cluster
An open cluster is a type of star cluster made of tens to a few thousand stars that were formed from the same giant molecular cloud and have roughly the same age. More than 1,100 open clusters have been discovered within the Milky Way galaxy, and many more are thought to exist. They are loosely bound by mutual gravitational attraction and become disrupted by close encounters with other clusters and clouds of gas as they orbit the Galactic Center.
Star cluster
Star clusters are large groups of stars held together by self-gravitation. Two main types of star clusters can be distinguished: globular clusters are tight groups of ten thousand to millions of old stars which are gravitationally bound, while open clusters are more loosely clustered groups of stars, generally containing fewer than a few hundred members, and are often very young.
Show more
Related publications (43)

Hydrodynamical simulations of merging galaxy clusters: giant dark matter particle colliders, powered by gravity

David Richard Harvey, Richard Massey

Terrestrial particle accelerators collide charged particles, then watch the trajectory of outgoing debris - but they cannot manipulate dark matter. Fortunately, dark matter is the main component of galaxy clusters, which are continuously pulled together by ...
Oxford Univ Press2024

A new step forward in realistic cluster lens mass modelling: analysis of Hubble Frontier Field Cluster Abell S1063 from joint lensing, X-ray, and galaxy kinematics data

Jean-Paul Richard Kneib, Benjamin Yvan Alexandre Clement, Benjamin Emmanuel Nicolas Beauchesne, Mathilde Jauzac, Johan Richard

We present a new method to simultaneously and self-consistently model the mass distribution of galaxy clusters that combines constraints from strong lensing features, X-ray emission, and galaxy kinematics measurements. We are able to successfully decompose ...
Oxford2023

Probing the nature of Dark Energy through the study of large scale structures using spectroscopic surveys and their simulations

Andrei Variu

Measurements of large-scale structure (LSS), as performed on the largest 3D map of over two million extragalactic sources from the Sloan Digital Sky Survey, together with measurements of the cosmic microwave background (CMB) anisotropies, are in complete a ...
EPFL2023
Show more
Related MOOCs (14)
The Radio Sky I: Science and Observations
Be captivated by the exotic objects that populate the Radio Sky and gain a solid understanding of their physics and the fundamental techniques we use to observe them.
Introduction to Astrophysics
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Introduction à l'Astrophysique
Ce cours décrit les principaux concepts physiques utilisés en astrophysique. Il est proposé à l'EPFL aux étudiants de 2eme année de Bachelor en physique.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.