Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The growing complexity of digital signal processing applications implemented in programmable logic and embedded processors make a compelling case the use of high-level methodologies for their design and implementation. Past research has shown that for complex systems, raising the level of abstraction does not necessarily come at a cost in terms of performance or resource requirements. As a matter of fact, high-level synthesis tools supporting such a high abstraction often rival and on occasion improve low-level design. In spite of these successes, high-level synthesis still relies on programs being written with the target and often the synthesis process, in mind. In other words, imperative languages such as C or C++, most used languages for high-level synthesis, are either modified or a constrained subset is used to make parallelism explicit. In addition, a proper behavioral description that permits the unification for hardware and software design is still an elusive goal for heterogeneous platforms. A promising behavioral description capable of expressing both sequential and parallel application is RVC-CAL. RVC-CAL is a dataflow programming language that permits design abstraction, modularity, and portability. The objective of this thesis is to provide a high-level synthesis solution for RVC-CAL dataflow programs and provide an RVC-CAL design flow for heterogeneous platforms. The main contributions of this thesis are: a high-level synthesis infrastructure that supports the full specification of RVC-CAL, an action selection strategy for supporting parallel read and writes of list of tokens in hardware synthesis, a dynamic fine-grain profiling for synthesized dataflow programs, an iterative design space exploration framework that permits the performance estimation, analysis, and optimization of heterogeneous platforms, and finally a clock gating strategy that reduces the dynamic power consumption. Experimental results on all stages of the provided design flow, demonstrate the capabilities of the tools for high-level synthesis, software hardware Co-Design, design space exploration, and power optimization for reconfigurable hardware. Consequently, this work proves the viability of complex systems design and implementation using dataflow programming, not only for system-level simulation but real heterogeneous implementations.
, , ,
Aurélien François Gilbert Bloch