Publication

Functionalised Clathrochelate Complexes – New Building Blocks for Supramolecular Structures

Kay Severin, Matthew David Wise
2015
Journal paper
Abstract

Tris(dioxime) iron(II) clathrochelate complexes functionalised with 3- and 4-pyridyl groups have been employed as building blocks in the preparation of supramolecular structures by coordination-driven self-assembly. These complexes possess a number of desirable characteristics, being straightforward to synthesise and offering ample opportunity for steric and functional modification. Clathrochelate-based 4,4'-bipyridyl metalloligands from 1.5 nm to 5.4 nm in length were prepared in up to two steps and their potential as building blocks for supramolecular architectures demonstrated through the preparation of a discrete molecular square and a three dimensional (3D) coordination polymer. Furthermore, the structure-directing capability of clathrochelate building blocks was illustrated through the synthesis of octahedral cage compounds, which are capable of encapsulating the large, hydrophobic BPh4 – anion in aqueous solvent mixtures.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (9)
Supramolecular chemistry
Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component.
Supramolecular assembly
In chemistry, a supramolecular assembly is a complex of molecules held together by noncovalent bonds. While a supramolecular assembly can be simply composed of two molecules (e.g., a DNA double helix or an inclusion compound), or a defined number of stoichiometrically interacting molecules within a quaternary complex, it is more often used to denote larger complexes composed of indefinite numbers of molecules that form sphere-, rod-, or sheet-like species.
Coordination complex
A coordination complex is a chemical compound consisting of a central atom or ion, which is usually metallic and is called the coordination centre, and a surrounding array of bound molecules or ions, that are in turn known as ligands or complexing agents. Many metal-containing compounds, especially those that include transition metals (elements like titanium that belong to the periodic table's d-block), are coordination complexes. Coordination complexes are so pervasive that their structures and reactions are described in many ways, sometimes confusingly.
Show more
Related publications (32)

Half-clathrochelate Complexes as Versatile Links in Supramolecular Chemistry

Erica Giraldi

Clathrochelate complexes have been widely investigated with different size and shape and used as building blocks for the obtainment of discrete supramolecular architectures. These clathrochelate complexes are very stable and kinetically inert complexes. A ...
EPFL2021

Soft matter probed by nonlinear scattering: self-assembly, interfaces, hydration, and long-range order

Jan Dedic

All organisms are made to a large extent of soft matter - macromolecules such as proteins and polysaccharides, or assemblies of small molecules such as lipids embedded in an aqueous environment. Understanding the role of order in soft matter presents a cha ...
EPFL2020

Synthesis and Characterization of Coordination Cages Based on Clathrochelate Metalloligands

Giacomo Cecot

The work presented in this thesis focused on the synthesis and characterization of new metalloligands based on iron(II) clathrochelate complexes. Clathrochelates can be functionalized peripherally with donor groups capable of coordinating metal ions. The s ...
EPFL2019
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.