Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We examine the injection of electron spins from ferromagnets (F) into quasi-two-dimensional electron systems (2DES’s) of semiconductors and employ the transfer-matrix formalism to obtain the carrier-density dependence of the conductances across F/InAs(2DES) single as well as F/InAs(2DES)/F double junctions in the ballistic limit. The Rashba spin-orbit interaction in the semiconductor and oblique modes in devices of finite widths are taken into account. We distinguish between spin-valve and spin-transistor geometry, in which the in-plane magnetization vectors in the ferromagnetic electrodes point perpendicular and parallel to the current direction, respectively. In case of the spin-transistor geometry, we find optimum coupling with the Rashba spin-precession state for injection straight along the channel. The distinct mismatch of majority and minority spin subbands in the ferromagnet to the band structure of the semiconductor causes spin-dependent scattering at the interface. This results in spin filtering. Within a Stoner model for ferromagnets spin filtering is stronger for iron than for Permalloy parameters and can be enhanced by an additional elastic scattering potential at the interface. In F/InAs(2DES)/F double junctions Fabry-Perot-type interferences are obtained. In case of spin-valve geometry they are due to particle interference, whereas in spin-transistor geometry spin itself is involved.