Publication

A Distributed Intelligent Sensing Approach for Environmental Monitoring Applications

Abstract

Scientific reports from around the world present us with the undeniable fact that the global ecosystem is undergoing severe change. As this shift accelerates, it is ever more critical that we are able to quantify the local effects of such changes, and further, their implications, from our daily life to the biological processes that put food on our tables. In this thesis, we study the application of sensor network technology to the observation and estimation of highly local phenomena---specifically at a scale between ten to several hundred square meters. Embedding knowledge about the observed process directly into the sensor nodes' behavior via dedicated resource management or control algorithms allows us to deploy dense networks with low power requirements. Ecological systems are notoriously complex. In our work we must thus be highly experimental; it is our highest goal that we construct an approach to environmental monitoring that is not only realistic, but practical for real-world use. Our approach is centered on a commercially available sensor network product, aided by an off-the-shelf quadrotor with minimal customization. We validate our approach through a series of experiments performed from simulation all the way to reality, in deployments lasting days to several months. We motivate the need for local data via two case studies examining physical phenomena. First, employing novel modalities, we study the eclosion of a common agricultural pest. We present our efforts to acquire data that is more local than commonly employed methods, culminating in a six month deployment in a Swiss apple orchard. Next, we apply a environmental fluid dynamics model to enable the estimation of sensible heat flux using an inexpensive sensor. We integrate the sensor with a wireless sensor network and validate its capabilities in a short-term deployment. Acquiring meaningful data on a local scale requires that we advance the state of the art in multiple aspects. Static sensor networks present a classical tension between resolution, autonomy, and accuracy. We explore the performance of algorithms aimed at providing all three, showing explicitly what is required to implement these approaches for real-world applications in an autonomous deployment under uncontrolled conditions. Eventually, spatial resolution is limited by network density. Such limits may be overcome by the use of mobile sensors. We explore the use of an off-the-shelf quadrotor, equipped with environmental sensors, as an additional element in system of heterogeneous sensing nodes. Through a series of indoor and outdoor experiments, we quantify the contribution of a such a mobile sensor, and various strategies for planning its path.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (34)
Wireless sensor network
Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind. These are similar to wireless ad hoc networks in the sense that they rely on wireless connectivity and spontaneous formation of networks so that sensor data can be transported wirelessly.
Wireless ad hoc network
A wireless ad hoc network (WANET) or mobile ad hoc network (MANET) is a decentralized type of wireless network. The network is ad hoc because it does not rely on a pre-existing infrastructure, such as routers or wireless access points. Instead, each node participates in routing by forwarding data for other nodes. The determination of which nodes forward data is made dynamically on the basis of network connectivity and the routing algorithm in use.
Sensor node
A sensor node (also known as a mote in North America), consists of an individual node from a sensor network that is capable of performing a desired action such as gathering, processing or communicating information with other connected nodes in a network. Although wireless sensor networks have existed for decades and used for diverse applications such as earthquake measurements or warfare, the modern development of small sensor nodes dates back to the 1998 Smartdust project and the NASA.
Show more
Related publications (42)

Morphological and Material Programability of a Hall-Effect Based Soft Tactile Sensors

Josephine Anna Eleanor Hughes, Sudong Lee

The different receptors in human skin show not only diversity in the stimuli to which they respond, but also variable sensitivity and directionality. This is often determined by their location or morphology, and can play an important role in filtering or a ...
IEEE2024

Localizing the Source of an Epidemic Using Few Observations

Brunella Marta Spinelli

Localizing the source of an epidemic is a crucial task in many contexts, including the detection of malicious users in social networks and the identification of patient zeros€ of disease outbreaks. The difficulty of this task lies in the strict limitation ...
EPFL2018

Low-cost sensors for distributed surface-atmosphere heat exchange monitoring – a novel component of citizen observatories

Michael Lehning, Wolf Hendrik Huwald, Steven Vincent Weijs, Chad Higgins, Tristan Jonas Brauchli

Sensible heat flux is a component of the earth’s surface energy balance. It describes turbulent heat exchange between the land surface and the atmosphere and is of interest and importance for agriculture, urban heat budgets, and for understanding consequen ...
2016
Show more
Related MOOCs (15)
Digital Signal Processing [retired]
The course provides a comprehensive overview of digital signal processing theory, covering discrete time, Fourier analysis, filter design, sampling, interpolation and quantization; it also includes a
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Show more