Publication

Stream temperature prediction in ungauged basins: review of recent approaches and description of a new physics-derived statistical model

Abstract

The development of stream temperature regression models at regional scales has regained some popularity over the past years. These models are used to predict stream temperature in ungauged catchments to assess the impact of human activities or climate change on riverine fauna over large spatial areas. A comprehensive literature review presented in this study shows that the temperature metrics predicted by the majority of models correspond to yearly aggregates, such as the popular annual maximum weekly mean temperature (MWMT). As a consequence, current models are often unable to predict the annual cycle of stream temperature, nor can the majority of them forecast the inter-annual variation of stream temperature. This study presents a new statistical model to estimate the monthly mean stream temperature of ungauged rivers over multiple years in an Alpine country (Switzerland). Contrary to similar models developed to date, which are mostly based on standard regression approaches, this one attempts to incorporate physical aspects into its structure. It is based on the analytical solution to a simplified version of the energy-balance equation over an entire stream network. Some terms of this solution cannot be readily evaluated at the regional scale due to the lack of appropriate data, and are therefore approximated using classical statistical techniques. This physics-inspired approach presents some advantages: (1) the main model structure is directly obtained from first principles, (2) the spatial extent over which the predictor variables are averaged naturally arises during model development, and (3) most of the regression coefficients can be interpreted from a physical point of view – their values can therefore be constrained to remain within plausible bounds. The evaluation of the model over a new freely available data set shows that the monthly mean stream temperature curve can be reproduced with a rootmean-square error (RMSE) of +/-1.3 °C, which is similar in precision to the predictions obtained with a multi-linear regression model. We illustrate through a simple example how the physical aspects contained in the model structure can be used to gain more insight into the stream temperature dynamics at regional scales.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (33)
Linear regression
In statistics, linear regression is a linear approach for modelling the relationship between a scalar response and one or more explanatory variables (also known as dependent and independent variables). The case of one explanatory variable is called simple linear regression; for more than one, the process is called multiple linear regression. This term is distinct from multivariate linear regression, where multiple correlated dependent variables are predicted, rather than a single scalar variable.
Segmented regression
Segmented regression, also known as piecewise regression or broken-stick regression, is a method in regression analysis in which the independent variable is partitioned into intervals and a separate line segment is fit to each interval. Segmented regression analysis can also be performed on multivariate data by partitioning the various independent variables. Segmented regression is useful when the independent variables, clustered into different groups, exhibit different relationships between the variables in these regions.
Logistic regression
In statistics, the logistic model (or logit model) is a statistical model that models the probability of an event taking place by having the log-odds for the event be a linear combination of one or more independent variables. In regression analysis, logistic regression (or logit regression) is estimating the parameters of a logistic model (the coefficients in the linear combination).
Show more
Related publications (80)

Quantifying the Unknown: Data-Driven Approaches and Applications in Energy Systems

Paul Scharnhorst

In light of the challenges posed by climate change and the goals of the Paris Agreement, electricity generation is shifting to a more renewable and decentralized pattern, while the operation of systems like buildings is increasingly electrified. This calls ...
EPFL2024

Distributional Regression and Autoregression via Optimal Transport

Laya Ghodrati

We present a framework for performing regression when both covariate and response are probability distributions on a compact and convex subset of Rd\R^d. Our regression model is based on the theory of optimal transport and links the conditional Fr'echet m ...
EPFL2023

Small area vulnerability, household food insecurity and child malnutrition in Medellin, Colombia: results from a repeated cross-sectional study

Stéphane Joost

Summary Background Malnutrition and food insecurity might be driven not only by individual factors but also by contextual conditions, such as area-level deprivation or vulnerability. This study aimed to analyze the association between area-level vulnerabil ...
2023
Show more
Related MOOCs (14)
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Selected Topics on Discrete Choice
Discrete choice models are used extensively in many disciplines where it is important to predict human behavior at a disaggregate level. This course is a follow up of the online course “Introduction t
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.