Publication

Memory Systems and Interconnects for Scale-Out Servers

Stavros Volos
2015
EPFL thesis
Abstract

The information revolution of the last decade has been fueled by the digitization of almost all human activities through a wide range of Internet services. The backbone of this information age are scale-out datacenters that need to collect, store, and process massive amounts of data. These datacenters distribute vast datasets across a large number of servers, typically into memory-resident shards so as to maintain strict quality-of-service guarantees. While data is driving the skyrocketing demands for scale-out servers, processor and memory manufacturers have reached fundamental efficiency limits, no longer able to increase server energy efficiency at a sufficient pace. As a result, energy has emerged as the main obstacle to the scalability of information technology (IT) with huge economic implications. Delivering sustainable IT calls for a paradigm shift in computer system design. As memory has taken a central role in IT infrastructure, memory-centric architectures are required to fully utilize the IT's costly memory investment. In response, processor architects are resorting to manycore architectures to leverage the abundant request-level parallelism found in data-centric applications. Manycore processors fully utilize available memory resources, thereby increasing IT efficiency by almost an order of magnitude. Because manycore server chips execute a large number of concurrent requests, they exhibit high incidence of accesses to the last-level-cache for fetching instructions (due to large instruction footprints), and off-chip memory (due to lack of temporal reuse in on-chip caches) for accessing dataset objects. As a result, on-chip interconnects and the memory system are emerging as major performance and energy-efficiency bottlenecks in servers. This thesis seeks to architect on-chip interconnects and memory systems that are tuned for the requirements of memory-centric scale-out servers. By studying a wide range of data-centric applications, we uncover application phenomena common in data-centric applications, and examine their implications on on-chip network and off-chip memory traffic. Finally, we propose specialized on-chip interconnects and memory systems that leverage common traffic characteristics, thereby improving server throughput and energy efficiency.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.