Publication

Analysis of Quantized Electrical Characteristics of Microscale TiO2 Ink-Jet Printed Memristor

Résumé

We demonstrate the ink-jet printed fabrication technique for TiO2-based memristor, followed by detailed analysis of electrical characteristics and development of a new model that considers observed phenomena of quantized conductance steps. The existence of pinched hysteretic current-voltage characteristics is evidence of memristive behavior, provided by the reversible atomic rearrangement taking place in the functional layer. For the first time, performed electrical measurement on the micrometer thickness devices based on TiO2 active layer has captured the plateaux steps of the conductance at integer multiples of elementary quantum conductance. This behavior is consistent with the assumption that transport from electrode to electrode emerges through confined paths of conductive filaments with radius in the nanometer size range. Moreover, we introduce a novel model, based on the diffusion equation for ballistic transport in memristive devices, which considers the conductance plateaux steps.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (32)
Memristor
En électronique, le memristor (ou memristance) est un composant électronique passif. Il a été décrit comme le quatrième composant passif élémentaire, aux côtés du condensateur (ou capacité), du résistor (ou résistance) et de la bobine(ou inductance). Le nom est un mot-valise formé à partir des deux mots anglais memory et resistor. Un memristor stocke efficacement l’information car la valeur de sa résistance électrique change de façon permanente lorsqu’un courant est appliqué.
Neuromorphic engineering
Neuromorphic computing is an approach to computing that is inspired by the structure and function of the human brain. A neuromorphic computer/chip is any device that uses physical artificial neurons to do computations. In recent times, the term neuromorphic has been used to describe analog, digital, mixed-mode analog/digital VLSI, and software systems that implement models of neural systems (for perception, motor control, or multisensory integration).
Electrical length
In electrical engineering, electrical length is a dimensionless parameter equal to the physical length of an electrical conductor such as a cable or wire, divided by the wavelength of alternating current at a given frequency traveling through the conductor. In other words, it is the length of the conductor measured in wavelengths. It can alternately be expressed as an angle, in radians or degrees, equal to the phase shift the alternating current experiences traveling through the conductor.
Afficher plus
Publications associées (32)

Emulating Multimemristive Behavior of Silicon Nanowire-Based Biosensors by Using CMOS-Based Implementations

Sandro Carrara, Junrui Chen, Kapil Bhardwaj

The research presented in this article draws inspiration from previous efforts aimed at replicating the functions of various solid-state memristors using a variety of materials. The memristor circuit emulator serves as a cost-effective tool for circuit des ...
Ieee-Inst Electrical Electronics Engineers Inc2024

3D trigonal FAPbI(3)-based multilevel resistive switching nonvolatile memory for artificial neural synapse

Mohammad Khaja Nazeeruddin, Paul Joseph Dyson, Yong Ding, Li Tao, Yao Zhang, Jun Zhang, Bowen Jiang

Hybrid perovskites have attracted enormous attention in the next generation resistive switching (RS) memristor for the artificial synapses, owing to their ambipolar charge transport, long diffusion length, and tunable visible bandgap. However, the variable ...
WILEY2023

Multi-memristive synaptic architectures for training neural networks

Irem Boybat Kara

Highly data-centric AI workloads require that new computing paradigms be adopted because the performance of traditional CPU- and GPU-based systems are limited by data access and transfer. Training deep neural networks with millions of tunable parameters ta ...
EPFL2020
Afficher plus
MOOCs associés (10)
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Plasma Physics: Applications
Learn about plasma applications from nuclear fusion powering the sun, to making integrated circuits, to generating electricity.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.