Realization of logic and storage operations in memristive circuits have opened up a promising research direction of in-memory computing. Elementary digital circuits, e.g., Boolean arithmetic circuits, can be economically realized within memristive circuits with a limited performance overhead as compared to the standard computation paradigms. This paper takes a major step along this direction by proposing a fully-programmable in-memory computing system. In particular, we address, for the first time, the question of controlling the in-memory computation, by proposing a lightweight unit managing the operations performed on a memristive array. Assembly-level programming abstraction is achieved by a natively-implemented majority and complement operator. This platform enables diverse sets of applications to be ported with little effort. As a case study, we present a standardized symmetric-key cipher for lightweight security applications. The detailed system design flow and simulation results with accurate device models are reported validating the approach.
Francesco Regazzoni, Mirjana Stojilovic
Marcos Vinícius Silva Oliveira