Publication

Preliminary conceptual design of DEMO EC system

Minh Quang Tran
2015
Conference paper
Abstract

In the framework of EUROfusion Consortium the Work Package Heating and Current Drive addresses the engineering design and R&D for the electron cyclotron, ion cyclotron and neutral beam systems. This paper reports the activities performed in 2014, focusing on the work done regarding the input for the conceptual design of the EC system, particularly for the gyrotron, the transmission line and the launchers.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Cyclotron
A cyclotron is a type of particle accelerator invented by Ernest Lawrence in 1929–1930 at the University of California, Berkeley, and patented in 1932. A cyclotron accelerates charged particles outwards from the center of a flat cylindrical vacuum chamber along a spiral path. The particles are held to a spiral trajectory by a static magnetic field and accelerated by a rapidly varying electric field. Lawrence was awarded the 1939 Nobel Prize in Physics for this invention. The cyclotron was the first "cyclical" accelerator.
Engineering design process
The engineering design process, also known as the engineering method, is a common series of steps that engineers use in creating functional products and processes. The process is highly iterative - parts of the process often need to be repeated many times before another can be entered - though the part(s) that get iterated and the number of such cycles in any given project may vary. It is a decision making process (often iterative) in which the basic sciences, mathematics, and engineering sciences are applied to convert resources optimally to meet a stated objective.
Cyclotron resonance
Cyclotron resonance describes the interaction of external forces with charged particles experiencing a magnetic field, thus already moving on a circular path. It is named after the cyclotron, a cyclic particle accelerator that utilizes an oscillating electric field tuned to this resonance to add kinetic energy to charged particles. The cyclotron frequency or gyrofrequency is the frequency of a charged particle moving perpendicular to the direction of a uniform magnetic field B (constant magnitude and direction).
Show more
Related publications (33)

High power mm-wave loss measurements of ITER ex-vessel waveguide components at the FALCON test facility at the Swiss Plasma Center

Timothy Goodman, René Chavan, Anastasia Xydou

Many future fusion devices will rely heavily, if not solely, on electron cyclotron (EC) heating subsystems to provide bulk heating, instability control (neoclassical tearing mode (NTM) stabilization), and thermal instability control. Efficient use of the i ...
E D P SCIENCES2023

Rapid optimization of stationary tokamak plasmas in RAPTOR: demonstration for the ITER hybrid scenario with neural network surrogate transport model QLKNN

Olivier Sauter, Federico Alberto Alfredo Felici, Michele Marin, Simon Van Mulders

This work presents a fast and robust method for optimizing the stationary radial distribution of temperature, density and parallel current density in a tokamak plasma and its application to first-principle-based modeling of the ITER hybrid scenario. A new ...
2021

TCV heating and divertor upgrades

Ambrogio Fasoli, Basil Duval, Jean-Marc Moret, Stefano Alberti, Holger Reimerdes, Christian Gabriel Theiler, Alexander Karpushov, Matthieu Toussaint, Marcelo Baquero Ruiz, Dario Vaccaro

The operational range and the reactor relevance of the TCV experiments are being enhanced by two sets of major upgrades. The first includes the installation of neutral beam injection (NBI) and new electron cyclotron (EC) auxiliary heating sources, to reach ...
IOP PUBLISHING LTD2020
Show more
Related MOOCs (7)
Plasma Physics and Applications [retired]
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics and Applications
The first MOOC to teach the basics of plasma physics and its main applications: fusion energy, astrophysical and space plasmas, societal and industrial applications
Plasma Physics: Introduction
Learn the basics of plasma, one of the fundamental states of matter, and the different types of models used to describe it, including fluid and kinetic.
Show more