Publication

Structural characterization of eutectic aqueous NaCl solutions under variable temperature and pressure conditions

Abstract

The structure of amorphous NaCl solutions produced by fast quenching is studied as a function of pressure, up to 4 GPa, by combined neutron diffraction experiments and classical molecular dynamics simulations. Similarly to LiCl solutions the system amorphizes at ambient pressure in a dense phase structurally similar to the e-HDA phase in pure water. The measurement of the static structure factor as a function of pressure allowed us to validate a new polarizable force field developed by Tazi et al., 2012, never tested under non-ambient conditions. We infer from simulations that the hydration shells of Na+ cations form well defined octahedra composed of both H2O molecules and Cl- anions at low pressure. These octahedra are gradually broken by the seventh neighbour moving into the shell of first neighbours yielding an irregular geometry. In contrast to LiCl solutions and pure water, the system does not show a polyamorphic transition under pressure. This confirms that the existence of polyamorphism relies on the tetrahedral structure of water molecules, which is broken here.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.