Summary
Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. Otherwise, if a diatomic molecule consists of two different atoms, such as carbon monoxide () or nitric oxide (), the molecule is said to be heteronuclear. The bond in a homonuclear diatomic molecule is non-polar. The only chemical elements that form stable homonuclear diatomic molecules at standard temperature and pressure (STP) (or typical laboratory conditions of 1 bar and 25 °C) are the gases hydrogen (), nitrogen (), oxygen (), fluorine (), and chlorine (). The noble gases (helium, neon, argon, krypton, xenon, and radon) are also gases at STP, but they are monatomic. The homonuclear diatomic gases and noble gases together are called "elemental gases" or "molecular gases", to distinguish them from other gases that are chemical compounds. At slightly elevated temperatures, the halogens bromine () and iodine () also form diatomic gases. All halogens have been observed as diatomic molecules, except for astatine and tennessine, which are uncertain. Other elements form diatomic molecules when evaporated, but these diatomic species repolymerize when cooled. Heating ("cracking") elemental phosphorus gives diphosphorus (). Sulfur vapor is mostly disulfur (). Dilithium () and disodium () are known in the gas phase. Ditungsten () and dimolybdenum () form with sextuple bonds in the gas phase. Dirubidium () is diatomic. All other diatomic molecules are chemical compounds of two different elements. Many elements can combine to form heteronuclear diatomic molecules, depending on temperature and pressure. Examples are gases carbon monoxide (CO), nitric oxide (NO), and hydrogen chloride (HCl). Many 1:1 binary compounds are not normally considered diatomic because they are polymeric at room temperature, but they form diatomic molecules when evaporated, for example gaseous MgO, SiO, and many others.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (8)

Second harmonic scattering of water in a biological context

Tereza Schönfeldová

Water is one of the most abundant molecules in the universe. It forms a hydrogen bond network with unique structure and dynamics. Hydrogen bonding is highly relevant to many biological processes inclu
EPFL2022

Survival of rotational alignment in H-2 scattering from Si(100)

Christopher Scott Reilly

We report a state-prepared, state-resolved study of rotational scattering of a diatomic molecule from a solid surface. Specifically, H-2 molecules with 80 meV kinetic energy are rotationally aligned i
AIP Publishing2021

An Experimental Setup for Heterogeneous Catalysis on Atomically Defined Metal Nanostructures

Jean-Guillaume De Groot

The main objective of this PhD thesis is to link the atomic scale structure to the catalytic properties of self-assembled nanostructures. The growth and characterization of these nanostructures was ca
EPFL2021
Show more
Related concepts (73)
Diatomic molecule
Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. Otherwise, if a diatomic molecule consists of two different atoms, such as carbon monoxide () or nitric oxide (), the molecule is said to be heteronuclear. The bond in a homonuclear diatomic molecule is non-polar.
Hydrogen
Hydrogen is the chemical element with the symbol H and atomic number 1. Hydrogen is the lightest element. At standard conditions hydrogen is a gas of diatomic molecules having the formula . It is colorless, odorless, tasteless, non-toxic, and highly combustible. Hydrogen is the most abundant chemical substance in the universe, constituting roughly 75% of all normal matter. Stars such as the Sun are mainly composed of hydrogen in the plasma state. Most of the hydrogen on Earth exists in molecular forms such as water and organic compounds.
Nitrogen
Nitrogen is the chemical element with the symbol N and atomic number 7. Nitrogen is a nonmetal and the lightest member of group 15 of the periodic table, often called the pnictogens. It is a common element in the universe, estimated at seventh in total abundance in the Milky Way and the Solar System. At standard temperature and pressure, two atoms of the element bond to form N2, a colorless and odorless diatomic gas. N2 forms about 78% of Earth's atmosphere, making it the most abundant uncombined element in air.
Show more
Related courses (59)
CH-110: Advanced general chemistry I
Le cours comporte deux parties. Les bases de la thermodynamique des équilibres et de la cinétique des réactions sont introduites dans l'une d'elles. Les premières notions de chimie quantique sur les é
BIO-212: Biological chemistry I
Biochemistry is a key discipline for the Life Sciences. Biological Chemistry I and II are two tightly interconnected courses that aim to describe and understand in molecular terms the processes that m
CH-160(en): Advanced general chemistry (english)
This course aims to teach essential notions of the structure of matter, chemical equilibria and reactivity. Classes and exercises provide the means to analyze and solve, by reasoning and calculation,
Show more
Related lectures (383)
Quantum Mechanics: Particles and Interactions
Explores quantum mechanics, emphasizing particles, interactions, spin, and wave functions.
Quantum Chemistry Fundamentals
Covers the fundamentals of quantum chemistry, including valence bond theory and molecular orbitals.
Specific Heats: Degrees of Freedom
Explains specific heats in gases and degrees of freedom in molecules.
Show more
Related MOOCs (1)
Water quality and the biogeochemical engine
Learn about how the quality of water is a direct result of complex bio-geo-chemical interactions, and about how to use these processes to mitigate water quality issues.