Diatomic molecules () are molecules composed of only two atoms, of the same or different chemical elements. If a diatomic molecule consists of two atoms of the same element, such as hydrogen () or oxygen (), then it is said to be homonuclear. Otherwise, if a diatomic molecule consists of two different atoms, such as carbon monoxide () or nitric oxide (), the molecule is said to be heteronuclear. The bond in a homonuclear diatomic molecule is non-polar.
The only chemical elements that form stable homonuclear diatomic molecules at standard temperature and pressure (STP) (or typical laboratory conditions of 1 bar and 25 °C) are the gases hydrogen (), nitrogen (), oxygen (), fluorine (), and chlorine ().
The noble gases (helium, neon, argon, krypton, xenon, and radon) are also gases at STP, but they are monatomic. The homonuclear diatomic gases and noble gases together are called "elemental gases" or "molecular gases", to distinguish them from other gases that are chemical compounds.
At slightly elevated temperatures, the halogens bromine () and iodine () also form diatomic gases. All halogens have been observed as diatomic molecules, except for astatine and tennessine, which are uncertain.
Other elements form diatomic molecules when evaporated, but these diatomic species repolymerize when cooled. Heating ("cracking") elemental phosphorus gives diphosphorus (). Sulfur vapor is mostly disulfur (). Dilithium () and disodium () are known in the gas phase. Ditungsten () and dimolybdenum () form with sextuple bonds in the gas phase. Dirubidium () is diatomic.
All other diatomic molecules are chemical compounds of two different elements. Many elements can combine to form heteronuclear diatomic molecules, depending on temperature and pressure.
Examples are gases carbon monoxide (CO), nitric oxide (NO), and hydrogen chloride (HCl).
Many 1:1 binary compounds are not normally considered diatomic because they are polymeric at room temperature, but they form diatomic molecules when evaporated, for example gaseous MgO, SiO, and many others.