Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The use of a single energy source for both manipulating micromachines and triggering their functionalities will result in highly integrated devices and simplify the design of the controlling platform. Here, we demonstrate this concept employing magnetoelectric Janus particle-based micromachines, which are fabricated by coating SiO2 microspheres with a CoFe2O4–BaTiO3 bilayer composite. While the inner magnetic CoFe2O4 layer enables the micromachines to be maneuvered using low magnitude rotating magnetic fields, the magnetoelectric bilayer composite provides the ability to remotely generate electric charges upon the application of a time-varying magnetic field. To demonstrate the capabilities of these micromachines, noble metals such as Au, Ag and Pt are magnetoelectrochemically reduced from their corresponding precursor salts and form nanoparticles on the surface of the micromachines. Magnetoelectric micromachines are promising devices for their use as metal scavengers, cell stimulators and electric field-assisted drug delivery agents.