A noble metal is ordinarily regarded as a metallic chemical element that is generally resistant to corrosion and is usually found in nature in its raw form. Gold, platinum, and the other platinum group metals (ruthenium, rhodium, palladium, osmium, iridium) are most often so classified. Silver, copper and mercury are sometimes included as noble metals, however less often as each of these usually occurs in nature combined with sulfur. In more specialized fields of study and applications the number of elements counted as noble metals can be smaller or larger. In physics, there are only three noble metals: copper, silver and gold. In dentistry, silver is not always counted as a noble metal since it is subject to corrosion when present in the mouth. In chemistry, the term noble metal is sometimes applied more broadly to any metallic or semimetallic element that does not react with a weak acid and give off hydrogen gas in the process. This broader set includes copper, mercury, technetium, rhenium, arsenic, antimony, bismuth and polonium, as well as gold, the six platinum group metals, and silver. TOC While noble metal lists can differ, they tend to cluster around the six platinum group metals (ruthenium, rhodium, palladium, osmium, iridium, platinum) plus gold. In addition to this term's function as a compound noun, there are circumstances where noble is used as an adjective for the noun metal. A galvanic series is a hierarchy of metals (or other electrically conductive materials, including composites and semimetals) that runs from noble to active, and allows one to predict how materials will interact in the environment used to generate the series. In this sense of the word, graphite is more noble than silver and the relative nobility of many materials is highly dependent upon context, as for aluminium and stainless steel in conditions of varying pH. The term noble metal can be traced back to at least the late 14th century and has slightly different meanings in different fields of study and application.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (23)
MSE-234: Mechanical behaviour of materials
Ce cours est une introduction au comportement mécanique, à l'élaboration, à la structure et au cycle de vie des grandes classes de matériaux de structure (métaux, polymères, céramiques et composites)
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
MSE-422: Advanced metallurgy
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
Show more
Related lectures (53)
Metals and Alloys: Properties and Applications
Explores the properties, extraction, and applications of metals and alloys, including historical evolution and recycling rates.
Aluminium-Copper System
Explores the aluminium-copper system, extraction processes, energy aspects, and 3D printing, including the Al-Cu system, phase diagrams, and the law of the lever.
Thin Film Growth: Atoms Arrival and AdhesionMOOC: Micro and Nanofabrication (MEMS)
Delves into thin film growth, adhesion, crystal structure, and stresses.
Show more
Related publications (250)

Probing Catalytic Sites and Adsorbate Spillover on Ultrathin FeO2-x Film on Ir(111) during CO Oxidation

Harald Brune, Hao Yin, Wei Fang

The spatially resolved identification of active sites on the heterogeneous catalyst surface is an essential step toward directly visualizing a catalytic reaction with atomic scale. To date, ferrous centers on platinum group metals have shown promising pote ...
Washington2024

Continuous Supercritical Water Impregnation Method for the Preparation of Metal Oxide on Activated Carbon Composite Materials

Christian Ludwig

Metal oxide (MexOy) nanomaterials are used as catalysts and/or sorbents in processes taking place in supercritical water (scH2O), which is the “green” solvent needed to obtain energy-relevant products. Their properties are significantly influenced by the s ...
2024

Semipinacol Rearrangement of Cyclopropenylcarbinols for the Synthesis of Highly Substituted Cyclopropanes

Jérôme Waser, Vladyslav Smyrnov

An electrophile-induced semipinacol rearrangement of cyclopropenylcarbinols is reported. This transformation gives access to various polyfunctionalized cyclopropanes under mild metal-free conditions. The scope of the reaction includes iodine, sulfur and se ...
2023
Show more
Related concepts (20)
Mercury (element)
Mercury is a chemical element with the symbol Hg and atomic number 80. It is also known as quicksilver and was formerly named hydrargyrum (haɪˈdrɑrdʒərəm ) from the Greek words hydro (water) and argyros (silver). A heavy, silvery d-block element, mercury is the only metallic element that is known to be liquid at standard temperature and pressure; the only other element that is liquid under these conditions is the halogen bromine, though metals such as caesium, gallium, and rubidium melt just above room temperature.
Aqua regia
Aqua regia (ˈreɪɡiə,_ˈriːdʒiə; from Latin, literally "regal water" or "royal water") is a mixture of nitric acid and hydrochloric acid, optimally in a molar ratio of 1:3. Aqua regia is a fuming liquid. Freshly prepared aqua regia is colorless, but it turns yellow, orange or red within seconds from the formation of nitrosyl chloride and nitrogen dioxide. It was named by alchemists because it can dissolve the noble metals gold and platinum, though not all metals.
Platinum group
The platinum-group metals (abbreviated as the PGMs; alternatively, the platinoids, platinides, platidises, platinum group, platinum metals, platinum family or platinum-group elements (PGEs)) are six noble, precious metallic elements clustered together in the periodic table. These elements are all transition metals in the d-block (groups 8, 9, and 10, periods 5 and 6). The six platinum-group metals are ruthenium, rhodium, palladium, osmium, iridium, and platinum.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.