Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In this paper, we first introduce fractional integral spaces, which possess some features: (i) when 0 < α < 1, functions in these spaces are not required to be zero on the boundary; (ii)the tempered fractional operators are equivalent to the Riemann-Liouville operator in the sense of the norm. Spec- tral Galerkin and Petrov-Galerkin methods for tempered fractional advection problems and tempered fractional diffusion problems can be developed as the classical spectral Galerkin and Petrov-Galerkin methods. Error analysis is provided and numerically confirmed for the tempered fractional advection and diffusion problems.
Simon François Dumas Primbault
Lucia-Nieves Garcia de Jalon Oyarzun