Publication

Robust H-infinity Controller Design Using Frequency-Domain Data via Convex Optimization

Abstract

A new robust controller design method that satisfies the H-infinity criterion is developed for linear time-invariant single-input single-output (SISO) systems. A data-driven approach is implemented in order to avoid the unmodeled dynamics associated with parametric models. This data-driven method uses fixed order controllers to satisfy the H-infinity criterion in the frequency domain. The necessary and sufficient conditions for the existence of such controllers are presented by a set of convex constraints. These conditions are also extended to systems with frequency-domain uncertainties in polytopic form. It is shown that the upper bound on the weighted infinity norm of the sensitivity function converges monotonically to the optimal value, when the controller order increases. Additionally, the practical issues involved in computing fixed-order rational H infinity controllers in discrete- or continuous-time by convex optimization techniques are addressed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.