Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We derive rigorous asymptotic results for the magnitude of contagion in a large counterparty network and give an analytical expression for the asymptotic fraction of defaults, in terms of network characteristics. Our results extend previous studies on contagion in random graphs to inhomogeneous-directed graphs with a given degree sequence and arbitrary distribution of weights. We introduce a criterion for the resilience of a large financial network to the insolvency of a small group of financial institutions and quantify how contagion amplifies small shocks to the network. Our results emphasize the role played by contagious links and show that institutions which contribute most to network instability have both large connectivity and a large fraction of contagious links. The asymptotic results show good agreement with simulations for networks with realistic sizes.
Andreas Loukas, Jean-Baptiste Francis Marie Juliette Cordonnier
Ali H. Sayed, Augusto José Rabelo Almeida Santos
Enrico Amico, Antonella Romano, Emahnuel Troisi Lopez