Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study the structure of planar point sets that determine a small number of distinct distances. Specifically, we show that if a set of n points determines o(n) distinct distances, then no line contains Omega(n (7/8)) points of and no circle contains Omega(n (5/6)) points of . We rely on the partial variant of the Elekes-Sharir framework that was introduced by Sharir, Sheffer, and Solymosi in [19] for bipartite distinct distance problems. To prove our bound for the case of lines we combine this framework with a theorem from additive combinatorics, and for our bound for the case of circles we combine it with some basic algebraic geometry and a recent incidence bound for plane algebraic curves by Wang, Yang, and Zhang [20]. A significant difference between our approach and that of [19] (and of other related results) is that instead of dealing with distances between two point sets that are restricted to one-dimensional curves, we consider distances between one set that is restricted to a curve and one set with no restrictions on it.