Algebraic geometry is a branch of mathematics which classically studies zeros of multivariate polynomials. Modern algebraic geometry is based on the use of abstract algebraic techniques, mainly from commutative algebra, for solving geometrical problems about these sets of zeros.
The fundamental objects of study in algebraic geometry are algebraic varieties, which are geometric manifestations of solutions of systems of polynomial equations. Examples of the most studied classes of algebraic varieties are lines, circles, parabolas, ellipses, hyperbolas, cubic curves like elliptic curves, and quartic curves like lemniscates and Cassini ovals. These are plane algebraic curves. A point of the plane lies on an algebraic curve if its coordinates satisfy a given polynomial equation. Basic questions involve the study of points of special interest like singular points, inflection points and points at infinity. More advanced questions involve the topology of the curve and the relationship between curves defined by different equations.
Algebraic geometry occupies a central place in modern mathematics and has multiple conceptual connections with such diverse fields as complex analysis, topology and number theory. As a study of systems of polynomial equations in several variables, the subject of algebraic geometry begins with finding specific solutions via equation solving, and then proceeds to understand the intrinsic properties of the totality of solutions of a system of equations. This understanding requires both conceptual theory and computational technique.
In the 20th century, algebraic geometry split into several subareas.
The mainstream of algebraic geometry is devoted to the study of the complex points of the algebraic varieties and more generally to the points with coordinates in an algebraically closed field.
Real algebraic geometry is the study of the real algebraic varieties.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, an elliptic curve is a smooth, projective, algebraic curve of genus one, on which there is a specified point O. An elliptic curve is defined over a field K and describes points in K^2, the Cartesian product of K with itself. If the field's characteristic is different from 2 and 3, then the curve can be described as a plane algebraic curve which consists of solutions (x, y) for: for some coefficients a and b in K. The curve is required to be non-singular, which means that the curve has no cusps or self-intersections.
In mathematics, in particular in algebraic geometry, a complete algebraic variety is an algebraic variety X, such that for any variety Y the morphism is a closed map (i.e. maps closed sets onto closed sets). This can be seen as an analogue of compactness in algebraic geometry: a topological space X is compact if and only if the above projection map is closed with respect to topological products. The image of a complete variety is closed and is a complete variety. A closed subvariety of a complete variety is complete.
The Fields Medal is a prize awarded to two, three, or four mathematicians under 40 years of age at the International Congress of the International Mathematical Union (IMU), a meeting that takes place every four years. The name of the award honours the Canadian mathematician John Charles Fields. The Fields Medal is regarded as one of the highest honors a mathematician can receive, and has been described as the Nobel Prize of Mathematics, although there are several major differences, including frequency of award, number of awards, age limits, monetary value, and award criteria.
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
Un MOOC francophone d'algèbre linéaire accessible à tous, enseigné de manière rigoureuse et ne nécessitant aucun prérequis.
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex
In mathematics, more specifically algebra, abstract algebra or modern algebra is the study of algebraic structures. Algebraic structures include groups, rings, fields, modules, vector spaces, lattices, and algebras over a field. The term abstract algebra was coined in the early 20th century to distinguish it from older parts of algebra, and more specifically from elementary algebra, the use of variables to represent numbers in computation and reasoning.
Algebraic topology is a branch of mathematics that uses tools from abstract algebra to study topological spaces. The basic goal is to find algebraic invariants that classify topological spaces up to homeomorphism, though usually most classify up to homotopy equivalence. Although algebraic topology primarily uses algebra to study topological problems, using topology to solve algebraic problems is sometimes also possible. Algebraic topology, for example, allows for a convenient proof that any subgroup of a free group is again a free group.
Differential geometry is a mathematical discipline that studies the geometry of smooth shapes and smooth spaces, otherwise known as smooth manifolds. It uses the techniques of differential calculus, integral calculus, linear algebra and multilinear algebra. The field has its origins in the study of spherical geometry as far back as antiquity. It also relates to astronomy, the geodesy of the Earth, and later the study of hyperbolic geometry by Lobachevsky.
We define p-adic BPS or pBPS invariants for moduli spaces M-beta,M-chi of one-dimensional sheaves on del Pezzo and K3 surfaces by means of integration over a non-archimedean local field F. Our definition relies on a canonical measure mu can on the F-analyt ...
We develop a very general version of the hyperbola method which extends the known method by Blomer and Brudern for products of projective spaces to complete smooth split toric varieties. We use it to count Campana points of bounded log-anticanonical height ...
We provide new explicit examples of lattice sphere packings in dimensions 54, 55, 162, 163, 486 and 487 that are the densest known so far, using Kummer families of elliptic curves over global function fields.In some cases, these families of elliptic curves ...