Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Each bacterial species has a characteristic shape, but the benefits of specific morphologies remain largely unknown. To understand potential functions for cell shape, we focused on the curved bacterium Caulobacter crescentus. Paradoxically, C. crescentus curvature is robustly maintained in the wild but straight mutants have no known disadvantage in standard laboratory conditions. Here we demonstrate that cell curvature enhances C. crescentus surface colonization in flow. Imaging the formation of microcolonies at high spatial and temporal resolution indicates that flow causes curved cells to orient such that they arc over the surface, thereby decreasing the distance between the surface and polar adhesive pili, and orienting pili to face the surface. C. crescentus thus repurposes pilus retraction, typically used for surface motility, for surface attachment. The benefit provided by curvature is eliminated at high flow intensity, raising the possibility that diversity in curvature adapts related species for life in different flow environments.
Tom Ian Battin, Hannes Markus Peter, Susheel Bhanu Busi, Grégoire Marie Octave Edouard Michoud, Leïla Ezzat, Massimo Bourquin, Tyler Joe Kohler, Jade Brandani, Stylianos Fodelianakis, Paraskevi Pramateftaki, Matteo Roncoroni
Ardemis Anoush Boghossian, Melania Reggente, Benjamin Paul Johanès Gabriel Lambert, Mohammed Mouhib, Charlotte Elisabeth Marie Roullier, Alice Judith Gillen, Alessandra Antonucci, Vitalijs Zubkovs, Nils Schürgers