Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Climate change is expected to strongly impact the hydrological and thermal regimes of Alpine rivers within the coming decades. In this context, the development of hydrological models accounting for the specific dynamics of Alpine catchments appears as one of the promising approaches to reduce our uncertainty of future mountain hydrology. This paper describes the improvements brought to StreamFlow, an existing model for hydrological and stream temperature prediction built as an external extension to the physically based snow model Alpine3D. StreamFlow’s source code has been entirely written anew, taking advantage of object-oriented programming to significantly improve its structure and ease the implementation of future developments. The source code is now publicly available online, along with a complete documentation. A special emphasis has been put on modularity during the re-implementation of StreamFlow, so that many model aspects can be represented using different alternatives. For example, several options are now available to model the advection of water within the stream. This allows for an easy and fast comparison between different approaches and helps in defining more reliable uncertainty estimates of the model forecasts. In particular, a case study in a Swiss Alpine catchment reveals that the stream temperature predictions are particularly sensitive to the approach used to model the temperature of subsurface flow, a fact which has been poorly reported in the literature to date. Based on the case study, StreamFlow is shown to reproduce hourly mean discharge with a Nash–Sutcliffe efficiency (NSE) of 0:82 and hourly mean temperature with a NSE of 0:78.
Ekaterina Krymova, Nicola Parolini, Andrea Kraus, David Kraus, Daniel Lopez, Yijin Wang, Markus Scholz, Tao Sun
Tom Ian Battin, Hannes Markus Peter, Grégoire Marie Octave Edouard Michoud, Nicola Deluigi, David Touchette, Martina Gonzalez Mateu, Stylianos Fodelianakis, Paraskevi Pramateftaki
Joseph Chadi Benoit Lemaitre, Pan Xu, Weitong Zhang, Yijin Wang, Wei Cao, Myungjin Kim, Shan Yu, Xinyi Li, Lei Gao, Yuxin Huang