Publication

Multi-physics modelling of a compliant humanoid robot

Abstract

We present a multibody simulator being used for compliant humanoid robot modelling and report our reasoning for choosing the settings of the simulator's key features. First, we provide a study on how the numerical integration speed and accuracy depend on the coordinate representation of the multibody system. This choice is particularly critical for mechanisms with long serial chains (e.g. legs and arms). Our second contribution is a full electromechanical model of the inner dynamics of the compliant actuators embedded in the COMAN robot, since joints' compliance is needed for the robot safety and energy efficiency. Third, we discuss the different approaches for modelling contacts and selecting an appropriate contact library. The recommended solution is to couple our simulator with an open-source contact library offering both accurate and fast contact modelling. The simulator performances are assessed by two different tasks involving contacts: a bimanual manipulation task and a squatting tasks. The former shows reliability of the simulator. For the latter, we report a comparison between the robot behaviour as predicted by our simulation environment, and the real one.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.