Two parallel optical surfaces often exhibit colorful fringes along the lines of equal thickness because of the interference of light. This simple phenomenon allows one to observe subwavelength corrugations on a reflective surface by simply placing on it a flat reference dielectric surface, a so-called optical flat, and inspecting the resultant interference pattern. In this work, we extend this principle from dielectric surfaces to two-dimensional plasmonic nanostructures. Optical couplings between an Au nanodisk array and an Au thin film were measured quantitatively using two different techniques, namely, the classical Newton’s rings method and a closed-loop nano-positioning system. Extremely high spectral sensitivity to the inter-surface distance was observed in the near-field coupling regime, where a 1-nm change in distance could alter the resonance wavelength by almost 10 nm, 440 times greater than the variation in the case without near-field coupling. With the help of a numerical fitting technique, the resonance wavelength could be determined with a precision of 0.03 nm, corresponding to a distance precision as high as 0.003 nm. Utilizing this effect, we demonstrated that a plasmonic nanodisk array can be utilized as a plasmonic optical flat, with which nanometer-deep grooves can be directly visualized using a low-cost microscope.