Publication

Single-chip electron spin resonance detectors operating at 50 GHz, 92 GHz, and 146 GHz

Abstract

We report on the design and characterization of single-chip electron spin resonance (ESR) detectors operating at 50 GHz, 92 GHz, and 146 GHz. The core of the single-chip ESR detectors is an integrated LC-oscillator, formed by a single turn aluminum planar coil, a metal-oxide-metal capacitor, and two metal-oxide semiconductor field effect transistors used as negative resistance network. On the same chip, a second, nominally identical, LC-oscillator together with a mixer and an output buffer are also integrated. Thanks to the slightly asymmetric capacitance of the mixer inputs, a signal at a few hundreds of MHz is obtained at the output of the mixer. The mixer is used for frequency down-conversion, with the aim to obtain an output signal at a frequency easily manageable off-chip. The coil diameters are 120 μm, 70 μm, and 45 μm for the U-band, W-band, and the D-band oscillators, respectively. The experimental frequency noises at 100 kHz offset from the carrier are 90 Hz/Hz1/2, 300 Hz/Hz1/2, and 700 Hz/Hz1/2 at 300 K, respectively. The ESR spectra are obtained by measuring the frequency variations of the single-chip oscillators as a function of the applied magnetic field. The experimental spin sensitivities, as measured with a sample of α,γ-bisdiphenylene-β-phenylallyl (BDPA)/benzene complex, are 1 × 108 spins/Hz1/2, 4 × 107 spins/Hz1/2, 2 × 107 spins/Hz1/2 at 300 K, respectively. We also show the possibility to perform experiments up to 360 GHz by means of the higher harmonics in the microwave field produced by the integrated single-chip LC-oscillators.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.