Publication

Dynamics of methane dissociation on transition metals

Rainer Beck
2017
Journal paper
Abstract

One of the many contributions of Harold Winters to surface science was his pioneering ultrahigh vacuum study on the kinetics of the technologically important dissociation of CH4 on transition metals in the 1970s. He observed a dramatic activation of the dissociation with surface temperature alone and a huge isotope effect and suggested a simple dynamical model to rationalize his results. Since that time, our general understanding of the dynamics of gas-surface dissociations has exploded due to experimental advances (e.g., molecular beam and eigenstate resolved studies) and theoretical advances (quantum or classical dynamics on ab initio potential energy surfaces). This review tries to highlight how our understanding of the dynamics of CH4 dissociation on transition metals has matured since Harold’s pioneering experiments and original model.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.