Summary
In chemistry, a transition metal (or transition element) is a chemical element in the d-block of the periodic table (groups 3 to 12), though the elements of group 12 (and less often group 3) are sometimes excluded. The lanthanide and actinide elements (the f-block) are called inner transition metals and are sometimes considered to be transition metals as well. Since they are metals, they are lustrous and have good electrical and thermal conductivity. Most (with the exception of group 11 and group 12) are hard and strong, and have high melting and boiling temperatures. They form compounds in any of two or more different oxidation states and bind to a variety of ligands to form coordination complexes that are often coloured. They form many useful alloys and are often employed as catalysts in elemental form or in compounds such as coordination complexes and oxides. Most are strongly paramagnetic because of their unpaired d electrons, as are many of their compounds. All of the elements that are ferromagnetic near room temperature are transition metals (iron, cobalt and nickel) or inner transition metals (gadolinium). English chemist Charles Rugeley Bury (1890–1968) first used the word transition in this context in 1921, when he referred to a transition series of elements during the change of an inner layer of electrons (for example n = 3 in the 4th row of the periodic table) from a stable group of 8 to one of 18, or from 18 to 32. These elements are now known as the d-block. The 2011 IUPAC Principles of Chemical Nomenclature describe a "transition metal" as any element in groups 3 to 12 on the periodic table. This corresponds exactly to the d-block elements, and many scientists use this definition. In actual practice, the f-block lanthanide and actinide series are called "inner transition metals". The 2005 Red Book allows for the group 12 elements to be excluded, but not the 2011 Principles.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.