Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We present two different approaches to solve the hierarchy problem of the Standard Model and to provide a consistent dynamical mechanism for electroweak symmetry breaking. As a first scenario, we follow the naturalness paradigm as realized in Composite Higgs theories, which conceive the Higgs particle as a bound state of a new strongly interacting sector confining at the TeV scale. We present a minimal implementation of the model and study in detail the phenomenology of vector resonances, which are predicted as states excited from the vacuum by the conserved currents of the new strong dynamics. This analysis allows us to derive constraints on the parameter space of Composite Higgs models from the presently available LHC data and to confront naturalness with experimental results. Motivated by the rising tension between theoretical expectations and the absence of new physics signals at the LHC, we consider as a second possibility the neutral naturalness paradigm and address the hierarchy problem by posing the existence of a mirror copy of the Standard Model, as realized in Twin Higgs theories. This new color-blind sector is the main actor in protecting the Higgs mass from large radiative corrections and is un-discoverable at the LHC, allowing us to push far in the ultraviolet the scale where the Standard Model effective theory breaks down and colored resonances appear. We present an implementation of the Twin Higgs program into a composite model and discuss the requirements for uplifting the symmetry protection mechanism also to the ultraviolet theory. After introducing a consistent Composite Twin Higgs model, we consider the constraints imposed on the scale where colored resonances are expected by the determination of the Higgs mass at three loops order, electroweak precision tests and perturbativity of the ultraviolet-complete model. We show that, although allowing in principle the new physics scale to lie far out of the LHC reach, these constructions need the existence of light colored top partners, with a mass of around 2-4 TeV, to comply with indirect observations. Neutral naturalness models may then evade detection at the LHC, but they can be probed and falsified at future colliders.
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Arvind Shah, Rakesh Chawla, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Jessica Prisciandaro, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Guido Andreassi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Matthias Weber, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Maren Tabea Meinhard, Long Wang, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer