**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Concept# Minimal Supersymmetric Standard Model

Summary

The Minimal Supersymmetric Standard Model (MSSM) is an extension to the Standard Model that realizes supersymmetry. MSSM is the minimal supersymmetrical model as it considers only "the [minimum] number of new particle states and new interactions consistent with "Reality". Supersymmetry pairs bosons with fermions, so every Standard Model particle has a superpartner yet undiscovered. If discovered, such superparticles could be candidates for dark matter, and could provide evidence for grand unification or the viability of string theory. The failure to find evidence for MSSM using the Large Hadron Collider has strengthened an inclination to abandon it.
Background
The MSSM was originally proposed in 1981 to stabilize the weak scale, solving the hierarchy problem. The Higgs boson mass of the Standard Model is unstable to quantum corrections and the theory predicts that weak scale should be much weaker than what is observed to be. In the MSSM, the Higgs boson has a fermionic sup

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications

Loading

Related people

Loading

Related units

Loading

Related concepts

Loading

Related courses

Loading

Related lectures

Loading

Related people (49)

Related publications (100)

Loading

Loading

Loading

Related concepts (38)

Supersymmetry

In a supersymmetric theory the equations for force and the equations for matter are identical. In theoretical and mathematical physics, any theory with this property has the principle of supersymmet

Higgs boson

The Higgs boson, sometimes called the Higgs particle, is an elementary particle in the Standard Model of particle physics produced by the quantum excitation of the Higgs field, one of the fields in

Physics beyond the Standard Model

Physics beyond the Standard Model (BSM) refers to the theoretical developments needed to explain the deficiencies of the Standard Model, such as the inability to explain the fundamental parameters of

Related courses (4)

PHYS-817: Supersymmetry

Supersymmetry is the unique quantum extension of the symmetry principles of relativity.
This course offers a first but broad introduction covering the role of Supersymmetry in our understanding of both physics beyond the Standard Model and non-perturbative phenomena in quantum field theory.

PHYS-416: Particle physics II

Presentation of the electroweak and strong interaction theories that constitute the Standard Model of particle physics. The course also discusses the new theories proposed to solve the problems of the Standard Model.

PHYS-402: Astrophysics IV : observational cosmology

Cosmology is the study of the structure and evolution of the universe as a whole. This course describes the principal themes of cosmology, as seen
from the point of view of observations.

Related units (34)

Related lectures (5)

The Large Hadron Collider (LHC) has been producing pp collisions at 7 and 8 TeV since 2010 and promises a new era of discoveries in particle physics. One of its experiments, the Large Hadron Collider beauty (LHCb) experiment, was constructed to study CP violation in the B meson system. In addition to B physics, new Physics beyond the Standard Model can also be searched for at this single-arm forward spectrometer. With the different sub-detectors and the high resolution of the tracking system, the LHCb detector has the ability to search for heavy, long-lived and charged particles, which are predicted by extensions of the Standard Model. One of these extensions, the minimal Gauge Mediated Supersymmetry Breaking (mGMSB), proposes such a particle, named stau (τ~) - the SUSY bosonic counterpart of the heavy lepton tau (τ). The theory proposes that the staus may be pair-produced in pp collisions or in the decays of heavier particles, and have only electromagnetic interactions with the atoms of the medium like the muons. Therefore, we expect that at the energy of the LHC these particles can be produced if they do exist and that we have a chance to discover them at LHCb, as well as at the other experiments of the LHC. This thesis is dedicated to the search for stau pairs produced in pp collisions at the centre-of-mass energies √s = 7 and 8 TeV in the LHCb detector. For this purpose, we generated the stau pairs with seven different particle masses ranging from 124 to 309 GeV/c2 and simulated their path through the LHCb detector, as well as their muon background from the decays Z0, γ∗ → μ+μ−. Based on the results from the simulation, a set of cuts are then defined to select the stau pairs. Some muon pairs at high energies will also pass the selection cuts. Thus, to separate the stau pairs from the muon pairs, the Neural Network technique has been used. A first Neural Network has been used to distinguish the stau tracks from the muon tracks using their signals left in the sub-detectors: the VELO silicon detector, the electromagnetic calorimeter, the hadron calorimeter and the RICH detectors. Then, two methods to select the stau pairs have been developed: the first one is based on the product of the two responses from the first Neural Network (NN1) for the two tracks, the second one employs a second Neural Network to separate the stau pairs from the muon pairs by using the above product of the two NN1 responses and the invariant mass of pair. Finally, a favourable region for the staus finding has been defined and the expected numbers of stau and muon pairs in this region have been evaluated. The training of the Neural Network has been achieved with the Monte Carlo variables, then the trained Neural Network has been used to classify the data. The data used in our work were collected by the LHCb experiment in 2011 and 2012 and correspond to integrated luminosities of 1 fb−1 at √s = 7 TeV and of 2 fb−1 at √s = 8 TeV. No significant excess of signal has been observed. Upper limits at 95% CL on the cross section for stau pair production in pp collisions at √s = 7 and 8 TeV have been computed by using the profile likelihood method, which is derived from the well known Feldman and Cousins method.

Yang Bai, Roberto Franceschini, Tao Han, Tao Liu, Zhen Liu, Jing Shu, Yue Zhao

This document proposes a collection of simplified models relevant to the design of new-physics searches at the Large Hadron Collider (LHC) and the characterization of their results. Both ATLAS and CMS have already presented some results in terms of simplified models, and we encourage them to continue and expand this effort, which supplements both signature-based results and benchmark model interpretations. A simplified model is defined by an effective Lagrangian describing the interactions of a small number of new particles. Simplified models can equally well be described by a small number of masses and cross-sections. These parameters are directly related to collider physics observables, making simplified models a particularly effective framework for evaluating searches and a useful starting point for characterizing positive signals of new physics. This document serves as an official summary of the results from the 'Topologies for Early LHC Searches' workshop, held at SLAC in September of 2010, the purpose of which was to develop a set of representative models that can be used to cover all relevant phase space in experimental searches. Particular emphasis is placed on searches relevant for the first similar to 50-500 pb(-1) of data and those motivated by supersymmetric models. This note largely summarizes material posted at http://lhcnewphysics.org/, which includes simplified model definitions, Monte Carlo material, and supporting contacts within the theory community. We also comment on future developments that may be useful as more data is gathered and analyzed by the experiments.

In this work we address one of the phenomenological issues of beyond the Standard Model scenarios which embed Supersymmetry, namely the Supersymmetric Flavour Problem, in the context of String Theory. Indeed, the addition of new interactions to the Standard Model generically spoils its flavour structure which is one of its major achievements since it for example leads to a very elegant understanding of the absence of flavour changing neutral currents in the leptonic sector and of the stability of the proton, thanks to accidental symmetries. We focus on a subset of the phenomenologically dangerous operators, namely the soft scalar masses. One way out of the Supersymmetric Flavour Problem is to geographically separate the observable and hidden sectors along a fifth dimension, gravity being the only interaction propagating in the bulk. In such scenarios, the soft scalar masses are vanishing at the classical level since there is no direct contact term between the observable and hidden multiplets and tend to be universal at the loop-level. However such setups hardly ever come about in String Theory, which is one of the most promising candidates of quantum gravity. In order to make contact with the five-dimensional picture, we focus on the prototypical case of the E8 × E8 Heterotic M-Theory which, in a certain regime, effectively looks five-dimensional and embeds matter fields on two end-of-the-world branes. In these scenarios, not only gravity but also vector multiplets propagate in the five-dimensional bulk, effectively spoiling the sequestered picture. However, since the contact terms responsible for the appearance of soft scalar masses arise due to the exchange of heavy vectors, they do enjoy a current-current structure which can be exploited to inhibit the emergence of soft scalar masses by postulating a global symmetry in the hidden sector. In order to assess the possibility of realising such a mechanism, we first study the full dependence of the Kähler potential on both the moduli and the matter fields in the case of orbifold and Calabi-Yau compactifications. We then determine whether an effective sequestering may be achieved thanks to a global symmetry and argue that whereas for orbifold models our strategy can naturally be put at work, it can only be implemented in a subset of Calabi-Yau models.