Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Despite the large number of studies on synchronization, the hypothesis that interactions bear a cost for involved individuals has seldom been considered. The introduction of costly interactions leads, instead, to the formulation of a dichotomous scenario in which an individual may decide to cooperate and pay the cost in order to get synchronized with the rest of the population. Alternatively, the same individual can decide to free ride, without incurring any cost, waiting for others to get synchronized to his or her state. Thus, the emergence of synchronization may be seen as the byproduct of an evolutionary game in which individuals decide their behavior according to the benefit-to-cost ratio they accrued in the past. We study the onset of cooperation and synchronization in networked populations of Kuramoto oscillators and report how topology is essential in order for cooperation to thrive. We also display how different classes of topology foster synchronization differently both at microscopic and macroscopic levels.
Dario Floreano, Valentin Wüest, Fabio Bergonti
Robert West, Maxime Jean Julien Peyrard, Marija Sakota