Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We study the stable matching problem in non-bipartite graphs with incomplete but strict preference lists, where the edges have weights and the goal is to compute a stable matching of minimum or maximum weight. This problem is known to be NP-hard in general. Our contribution is two fold: a polyhedral characterization and an approximation algorithm. Previously Chen et al. have shown that the stable matching polytope is integral if and only if the subgraph obtained after running phase one of Irving's algorithm is bipartite. We improve upon this result by showing that there are instances where this subgraph might not be bipartite but one can further eliminate some edges and arrive at a bipartite subgraph. Our elimination procedure ensures that the set of stable matchings remains the same, and thus the stable matching polytope of the final subgraph contains the incidence vectors of all stable matchings of our original graph. This allows us to characterize a larger class of instances for which the weighted stable matching problem is polynomial-time solvable. We also show that our edge elimination procedure is best possible, meaning that if the subgraph we arrive at is not bipartite, then there is no bipartite subgraph that has the same set of stable matchings as the original graph. We complement these results with a 2-approximation algorithm for the minimum weight stable matching problem for instances where each agent has at most two possible partners in any stable matching. This is the first approximation result for any class of instances with general weights.