Publication

The weighted stable matching problem

Linda Farczadi
2017
Article de conférence
Résumé

We study the stable matching problem in non-bipartite graphs with incomplete but strict preference lists, where the edges have weights and the goal is to compute a stable matching of minimum or maximum weight. This problem is known to be NP-hard in general. Our contribution is two fold: a polyhedral characterization and an approximation algorithm. Previously Chen et al. have shown that the stable matching polytope is integral if and only if the subgraph obtained after running phase one of Irving's algorithm is bipartite. We improve upon this result by showing that there are instances where this subgraph might not be bipartite but one can further eliminate some edges and arrive at a bipartite subgraph. Our elimination procedure ensures that the set of stable matchings remains the same, and thus the stable matching polytope of the final subgraph contains the incidence vectors of all stable matchings of our original graph. This allows us to characterize a larger class of instances for which the weighted stable matching problem is polynomial-time solvable. We also show that our edge elimination procedure is best possible, meaning that if the subgraph we arrive at is not bipartite, then there is no bipartite subgraph that has the same set of stable matchings as the original graph. We complement these results with a 2-approximation algorithm for the minimum weight stable matching problem for instances where each agent has at most two possible partners in any stable matching. This is the first approximation result for any class of instances with general weights.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Concepts associés (42)
Couplage (théorie des graphes)
En théorie des graphes, un couplage ou appariement (en anglais matching) d'un graphe est un ensemble d'arêtes de ce graphe qui n'ont pas de sommets en commun. Soit un graphe simple non orienté G = (S, A) (où S est l'ensemble des sommets et A l'ensemble des arêtes, qui sont certaines paires de sommets), un couplage M est un ensemble d'arêtes deux à deux non adjacentes. C'est-à-dire que M est une partie de l'ensemble A des arêtes telle que Un couplage maximum est un couplage contenant le plus grand nombre possible d'arêtes.
Graphe biparti
En théorie des graphes, un graphe est dit biparti si son ensemble de sommets peut être divisé en deux sous-ensembles disjoints et tels que chaque arête ait une extrémité dans et l'autre dans . Un graphe biparti permet notamment de représenter une relation binaire. Il existe plusieurs façons de caractériser un graphe biparti. Par le nombre chromatique Les graphes bipartis sont les graphes dont le nombre chromatique est inférieur ou égal à 2. Par la longueur des cycles Un graphe est biparti si et seulement s'il ne contient pas de cycle impair.
Problème des mariages stables
vignette|Algorithme de Gale Shapley. En mathématiques, informatique et économie, le problème des mariages stables consiste à trouver, étant donné n hommes et n femmes, et leurs listes de préférences, une façon stable de les mettre en couple. Une situation est dite instable s'il y a au moins un homme et une femme qui préféreraient se mettre en couple plutôt que de rester avec leurs partenaires actuels (Dupont préfère à , et préfère Dupont à Durand). Ce problème a des applications en économie, en théorie des jeux et en physique statistique.
Afficher plus
Publications associées (55)

A Distributed Augmenting Path Approach for the Bottleneck Assignment Problem

Tony Alan Wood

We develop an algorithm to solve the bottleneck assignment problem (BAP) that is amenable to having computation distributed over a network of agents. This consists of exploring how each component of the algorithm can be distributed, with a focus on one com ...
Piscataway2024

Results on Sparse Integer Programming and Geometric Independent Sets

Jana Tabea Cslovjecsek

An integer linear program is a problem of the form max{c^T x : Ax=b, x >= 0, x integer}, where A is in Z^(n x m), b in Z^m, and c in Z^n.Solving an integer linear program is NP-hard in general, but there are several assumptions for which it becomes fixed p ...
EPFL2023

Random walks and forbidden minors III: poly(d epsilon(-1))-time partition oracles for minor-free graph classes

Akash Kumar

Consider the family of bounded degree graphs in any minor-closed family (such as planar graphs). Let d be the degree bound and n be the number of vertices of such a graph. Graphs in these classes have hyperfinite decompositions, where, one removes a small ...
IEEE COMPUTER SOC2022
Afficher plus
MOOCs associés (11)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.