Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The relative location of human body parts often materializes the semantics of on-going actions, intentions and even emotions expressed, or performed, by a human being. However, traditional methods of performance animation fail to correctly and automatically map the semantics of performer postures involving self-body contacts onto characters with different sizes and proportions. Our method proposes an egocentric normalization of the body-part relative distances to preserve the consistency of self contacts for a large variety of human-like target characters. Egocentric coordinates are character independent and encode the whole posture space, i.e., it ensures the continuity of the motion with and without self-contacts. We can transfer classes of complex postures involving multiple interacting limb segments by preserving their spatial order without depending on temporal coherence. The mapping process exploits a low-cost constraint relaxation technique relying on analytic inverse kinematics; thus, we can achieve online performance animation. We demonstrate our approach on a variety of characters and compare it with the state of the art in online retargeting with a user study. Overall, our method performs better than the state of the art, especially when the proportions of the animated character deviates from those of the performer.
Mariana Babo Rebelo, Marie Chatel
Paola Viganò, Tommaso Pietropolli