Publication

Responses of antinomic foliar traits to experimental climate forcing in beech and spruce saplings

Abstract

Global warming is predicted to have a strong impact on mountain ecosystems. Subalpine sylvopastoral systems are very sensitive to climate change, which puts their future sustainability at stake. These ecosystems are mostly dominated by spruce and beech, and therefore their regeneration abilities are critical in this context. The main objective was to characterize the short-term responses, of foliar traits in beech and spruce saplings through phenotypic plasticity with regard of actual scenarios of climate change. Therefore, we transplanted saplings from a cold environment at 1350 m a.s.l. in the Swiss Jura mountains to three recipient sites at lower altitudes along an altitudinal gradient, in the experimental framework of a space-for-time substitution approach and measured morpho-anatomical foliar traits. The results revealed for beech an increase of xeromorphism through the increase of the cuticle thickness, vein network and smaller stomata, associated, surprisingly, to a higher leaf area. This antinomic response allowed beech to grow in warmer conditions while coping with an increase of eva-porative demand during summer. Spruce did not present as much plasticity as compared to beech due to its inherent xeromorphic traits. Our findings further suggest a strong correlation between the timing of the leaf development, extreme conditions and tree growth. These contrasting strategies may lead to the competitive advantage of beech over spruce under climate change.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (39)
Leaf
A leaf (: leaves) is a principal appendage of the stem of a vascular plant, usually borne laterally aboveground and specialized for photosynthesis. Leaves are collectively called foliage, as in "autumn foliage", while the leaves, stem, flower, and fruit collectively form the shoot system. In most leaves, the primary photosynthetic tissue is the palisade mesophyll and is located on the upper side of the blade or lamina of the leaf but in some species, including the mature foliage of Eucalyptus, palisade mesophyll is present on both sides and the leaves are said to be isobilateral.
Climate change
In common usage, climate change describes global warming—the ongoing increase in global average temperature—and its effects on Earth's climate system. Climate change in a broader sense also includes previous long-term changes to Earth's climate. The current rise in global average temperature is more rapid than previous changes, and is primarily caused by humans burning fossil fuels. Fossil fuel use, deforestation, and some agricultural and industrial practices increase greenhouse gases, notably carbon dioxide and methane.
Beech
Beech (Fagus) is a genus of deciduous trees in the family Fagaceae, native to temperate Eurasia and North America. Recent classifications recognize 10 to 13 species in two distinct subgenera, Engleriana and Fagus. The Engleriana subgenus is found only in East Asia, distinctive for its low branches, often made up of several major trunks with yellowish bark. The better known Fagus subgenus beeches are high-branching with tall, stout trunks and smooth silver-grey bark. The European beech (Fagus sylvatica) is the most commonly cultivated.
Show more
Related publications (37)

From roots to canopy: Unraveling the influence of species diversity on tree water relations under warmer and drier climates

Eugénie Isabelle Mas

The worsening of drought events with rising air temperature alters tree water relations causing severe hydraulic impairments and widespread forest mortality. Mixing tree species with contrasting hydraulic traits could reduce forest vulnerability to extreme ...
EPFL2024

Twenty years of irrigation acclimation is driven by denser canopies and not by plasticity in twig- and needle-level hydraulics in a Pinus sylvestris forest

Charlotte Grossiord, Christoph Bachofen, Eugénie Isabelle Mas, Hervé Cochard, Alice Jacqueline Frédérique Gauthey, Alex Tunas Corzon

Climate change is predicted to increase atmospheric vapor pressure deficit, exacerbating soil drought, and thus enhancing tree evaporative demand and mortality. Yet, few studies have addressed the longer-term drought acclimation strategy of trees, particul ...
Oxford2024

Above- and below-ground responses to experimental climate forcing in two forb species from montane wooded pastures in Switzerland

Alexandre Buttler, Konstantin Svetlozarov Gavazov

Mountain ecosystems are particularly threatened by ongoing climate change and the species composition of high elevation grasslands is already changing. An open research question is how these ecosystems will adapt to changes in their key environmental const ...
WILEY2022
Show more
Related MOOCs (1)
Analyse du cycle de vie environmental
MOOC introduction à la pensée du cycle de vie et aux concepts théoriques pour réaliser et critiquer une analyse du cycle de vie.