Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Many of the currently best-known approximation algorithms for NP-hard optimization problems are based on Linear Programming (LP) and Semi-definite Programming (SDP) relaxations. Given its power, this class of algorithms seems to contain the most favourable candidates for outperforming the current state-of-the-art approximation guarantees for NP-hard problems, for which there still exists a gap between the inapproximability results and the approximation guarantees that we know how to achieve in polynomial time. In this thesis, we address both the power and the limitations of these relaxations, as well as the connection between the shortcomings of these relaxations and the inapproximability of the underlying problem. In the first part, we study the limitations of LP relaxations of well-known graph problems such as the Vertex Cover problem and the Independent Set problem. We prove that any small LP relaxation for the aforementioned problems, cannot have an integrality gap strictly better than and , respectively. Furthermore, our lower bound for the Independent Set problem also holds for any SDP relaxation. Prior to our work, it was only known that such LP relaxations cannot have an integrality gap better than for the Vertex Cover Problem, and better than for the Independent Set problem. In the second part, we study the so-called knapsack cover inequalities that are used in the current best relaxations for numerous combinatorial optimization problems of covering type. In spite of their widespread use, these inequalities yield LP relaxations of exponential size, over which it is not known how to optimize exactly in polynomial time. We address this issue and obtain LP relaxations of quasi-polynomial size that are at least as strong as that given by the knapsack cover inequalities. In the last part, we show a close connection between structural hardness for k-partite graphs and tight inapproximability results for scheduling problems with precedence constraints. This connection is inspired by a family of integrality gap instances of a certain LP relaxation. Assuming the hardness of an optimization problem on k-partite graphs, we obtain a hardness of for the problem of minimizing the makespan for scheduling with preemption on identical parallel machines, and a super constant inapproximability for the problem of scheduling on related parallel machines. Prior to this result, it was only known that the first problem does not admit a PTAS, and the second problem is NP-hard to approximate within a factor strictly better than 2, assuming the Unique Games Conjecture.
Nikolaos Geroliminis, Claudia Bongiovanni, Mor Kaspi
Volkan Cevher, Grigorios Chrysos, Efstratios Panteleimon Skoulakis