Publication

Regularization via Mass Transportation

Résumé

The goal of regression and classification methods in supervised learning is to minimize the empirical risk, that is, the expectation of some loss function quantifying the prediction error under the empirical distribution. When facing scarce training data, overfitting is typically mitigated by adding regularization terms to the objective that penalize hypothesis complexity. In this paper we introduce new regularization techniques using ideas from distributionally robust optimization, and we give new probabilistic interpretations to existing techniques. Specifically, we propose to minimize the worst-case expected loss, where the worst case is taken over the ball of all (continuous or discrete) distributions that have a bounded transportation distance from the (discrete) empirical distribution. By choosing the radius of this ball judiciously, we can guarantee that the worst-case expected loss provides an upper confidence bound on the loss on test data, thus offering new generalization bounds. We prove that the resulting regularized learning problems are tractable and can be tractably kernelized for many popular loss functions. We validate our theoretical out-of-sample guarantees through simulated and empirical experiments.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.