Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
The photonic properties of nanowires advocate for their utilization in next generation solar cells. Compared to traditional devices, the electric scheme is transformed from a single into an ensemble of pn junctions connected in parallel. This new configuration requires new schemes for the characterization. We show how conductive-probe atomic force microscopy, C-AFM, is an essential tool for the characterization and optimization of this parallel-connected nanowire devices. With C-AFM it is possible to obtain both surface topography and local electrical characterization with nanoscale resolution. We demonstrate topography and current mapping of nanowire forests, combined with current-voltage measurements of the individual nanowire junctions from the ensemble. Our results provide discussion elements on some factors limiting the performance of a nanowire-based solar cell and thereby to provide a path for their improvement.