Publication

Controlled deposition of titanium oxide overcoats by non-hydrolytic sol gel for improved catalyst selectivity and stability

Abstract

Advances in the synthetic control of surface nanostructures could improve the activity, selectivity and stability of heterogeneous catalysts. Here, we present a technique for the controlled deposition of TiO2 overcoats based on non-hydrolytic sol-gel chemistry. Continuous injection of Ti(iPrO)4 and TiCl4 mixtures led to the formation of conformal TiO2 overcoats with a growth rate of 0.4 nm/injected monolayer on several materials including high surface area SBA-15. Deposition of TiO2 on SBA-15 generated medium-strength Lewis acid sites, which catalyzed 1-phenylethanol dehydration at high selectivities and decreased deactivation rates compared to typically used HZSM-5. When supported metal nanoparticles were similarly overcoated, the intimate contact between the metal and acid sites at the support-overcoat interface significantly increased propylcyclohexane selectivity during the deoxygenation of lignin-derived propyl guaiacol (89% at 90% conversion compared to 30% for the uncoated catalyst). For both materials, the surface reactivity could be tuned with the overcoat thickness.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
Nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.
Heterogeneous catalysis
Heterogeneous catalysis is catalysis where the phase of catalysts differs from that of the reactants or products. The process contrasts with homogeneous catalysis where the reactants, products and catalyst exist in the same phase. Phase distinguishes between not only solid, liquid, and gas components, but also immiscible mixtures (e.g. oil and water), or anywhere an interface is present. Heterogeneous catalysis typically involves solid phase catalysts and gas phase reactants.
Silver nanoparticle
Silver nanoparticles are nanoparticles of silver of between 1 nm and 100 nm in size. While frequently described as being 'silver' some are composed of a large percentage of silver oxide due to their large ratio of surface to bulk silver atoms. Numerous shapes of nanoparticles can be constructed depending on the application at hand. Commonly used silver nanoparticles are spherical, but diamond, octagonal, and thin sheets are also common. Their extremely large surface area permits the coordination of a vast number of ligands.
Show more
Related publications (79)

Dilution versus fractionation: Separation technologies hyphenated with spICP-MS for characterizing metallic nanoparticles in aerosols

Jian Wang, Christian Ludwig, Andrea Testino, Tianyu Cen

The presence of metal salts has become one of the major limitations for measuring metallic nanoparticles (NPs) in single particle inductively coupled plasma mass spectrometry (spICP-MS). Their presence generates a background signal in spICP-MS that can be ...
2024

Construction of Fe3O4 bridged Pt/g-C3N4 heterostructure with enhanced solar to fuel conversion

Michael Graetzel, Shaik Mohammed Zakeeruddin

In this study, we report the effects of co-catalysts of Pt nanoparticles and Fe3O4 clusters on photocatalytic behaviors of g-C3N4 (CN) and the use of the resulting photocatalyst for CO2 photoreduction to solar fuels in a flow reactor operated at room-tempe ...
ELSEVIER2022

Realistic Modelling of Dynamics at Nanostructured Interfaces Relevant to Heterogeneous Catalysis

Kevin Rossi

The focus of this short review is directed towards investigations of the dynamics of nanostructured metallic heterogeneous catalysts and the evolution of interfaces during reaction-namely, the metal-gas, metal-liquid, and metal-support interfaces. Indeed, ...
MDPI2022
Show more
Related MOOCs (3)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.