Publication

Small scale radial inflow turbine performance and pre-design maps for Organic Rankine Cycles

Abstract

While small scale ORCs are currently dominated by volumetric expanders, the use of turbomachines is reconsidered due to their high efficiency and power density. Yet, suitable performance maps, which ensure an accurate starting point for the turbine design, are still missing for small scale turbines. This paper proposes a new non-dimensional performance map tailored for small scale turbines. The map is generated using an experimentally validated 1D code and adapted to small scale ORCs applications. A new polynomial fit is proposed, which accounts for the pressure ratio, since it is suggested to have a strong influence on the shape of the map. Through the analysis of the turbine losses, the underlying phenomena shaping the efficiency map are explained. A sensitivity analysis of the geometrical dependencies on the map shows a strong impact of the shroud to tip radius ratio, and explains why the Ns-Ds surface of the presented map is smaller than the original one. Compared to the experimentally validated 1D model the new map yields prediction errors below 4%.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.