Publication

Innovative measurement techniques for atmospheric turbulence and wind energy

Fernando Carbajo Fuertes
2018
EPFL thesis
Abstract

The measurement of different atmospheric flow quantities is of utmost importance for a correct understanding of most atmospheric phenomena. Researchers and industry in the fields of meteorology and wind engineering demand extensive and accurate measurements of atmospheric turbulence for a better understanding of its role in a wide range of applications such as weather forecast, wind resource evaluation, wind turbine wake, pollutant transport or urban climate. Quantitative measurements of relevant variables are particularly valuable for the development, testing and validation of turbulence parameterizations used in both analytical and numerical models. This thesis focuses in the development of innovative measurement techniques for atmospheric turbulence, particularly suitable for wind energy applications, and it is divided into four different studies.

The first study presents a multirotor UAV-based technique for the measurement of atmospheric turbulence and temperature. The technique is based on the integration of a fast-response multi-hole pressure probe and a thermocouple with an inertial measurement unit (IMU). This technique allows for an accurate measurement of time series of the three components of the velocity vector and temperature at any point in the atmosphere in which the UAV can fly. The technique relies on the correction of the velocity vector measured by the pressure probe on the frame of reference of the UAV -non inertial- with the information provided by the IMU. The study includes a validation of the technique against sonic anemometry and the measurement of the signature of tip vortices shed by the blades of a full-scale wind turbine as an example of its potential.

The second study presents a triple-lidar technique developed for the measurement of atmospheric turbulence at a point in space from synchronous measurements of three intersecting Doppler wind lidars. The laser beams must be non-coplanar so that trigonometric relationships allow the reconstruction of the velocity vector. The technique is validated against sonic anemometry in terms of the instantaneous velocity vector, turbulence statistics, Reynolds stresses and the spectra of the three components of the velocity and the turbulent kinetic energy.

The third study investigates the theoretical accuracy of the reconstruction of a full-scale wind turbine wake in terms of the average and the standard deviation of the longitudinal velocity component by volumetric scans from lidar measurements. To that end, a series of virtual experiments are performed, where synthetic lidar measurements are obtained from LES simulation results. The methodology described quantifies the errors and allows the optimization of the scan pattern so that it balances the different error sources and minimizes the total error.

The fourth study presents a measurement campaign dedicated to the characterization of full-scale wind turbine wakes under different inflow conditions. The measurements are performed with two nacelle-mounted scanning lidars. The first lidar characterizes the inflow while the second performs horizontal planar scans of the wake. The relationships obtained for the growth rate of wake width, velocity recovery and length of the near wake are compared to analytical models and allow to correct the parameters prescribed until now with new, more accurate values directly derived from full-scale experiments.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (40)
Velocity
Velocity is the speed and the direction of motion of an object. Velocity is a fundamental concept in kinematics, the branch of classical mechanics that describes the motion of bodies. Velocity is a physical vector quantity: both magnitude and direction are needed to define it. The scalar absolute value (magnitude) of velocity is called , being a coherent derived unit whose quantity is measured in the SI (metric system) as metres per second (m/s or m⋅s−1). For example, "5 metres per second" is a scalar, whereas "5 metres per second east" is a vector.
Wind power
Wind power is the use of wind energy to generate useful work. Historically, wind power was used by sails, windmills and windpumps, but today it is mostly used to generate electricity. This article deals only with wind power for electricity generation. Today, wind power is generated almost completely with wind turbines, generally grouped into wind farms and connected to the electrical grid. In 2022, wind supplied over 2000 TWh of electricity, which was over 7% of world electricity and about 2% of world energy.
Wind turbine
A wind turbine is a device that converts the kinetic energy of wind into electrical energy. , hundreds of thousands of large turbines, in installations known as wind farms, were generating over 650 gigawatts of power, with 60 GW added each year. Wind turbines are an increasingly important source of intermittent renewable energy, and are used in many countries to lower energy costs and reduce reliance on fossil fuels.
Show more
Related publications (98)

An improved statistical wake meandering model

Fernando Porté Agel, Peter Andreas Brugger, Corey Dean Markfort

A new statistical wake meandering (SWM) model is proposed that improves on existing models in the literature. Compared to the existing SWM models, the proposed model has a closed description that does not require simulations to create look-up tables while ...
IOP Publishing2024

Wind Turbine Wakes in Active Yaw Control: Numerical and Theoretical Studies

Mou Lin

In this thesis, we explore the best practice of simulating the wakes of the turbines under active yaw control (AYC) using large-eddy simulation (LES). In the first study, we validate the blade-element actuator disk model (ADM-BE) for a yawed wind turbine. ...
EPFL2023

Model-based constraints for trajectory determination of quad-copters: Design, calibration & merits for direct orientation

Jan Skaloud, Davide Antonio Cucci, Kenneth Joseph Paul

This paper proposes a novel method to improve georeferencing of airborne laser scanning by improved trajectory estimation using Vehicle Dynamic Model. In Vehicle Dynamic Model (VDM), the relationship between the dynamics of the platform and control inputs ...
2023
Show more
Related MOOCs (21)
SES Swiss-Energyscope
La transition énergique suisse / Energiewende in der Schweiz
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Trigonometric Functions, Logarithms and Exponentials
Ce cours donne les connaissances fondamentales liées aux fonctions trigonométriques, logarithmiques et exponentielles. La présentation des concepts et des propositions est soutenue par une grande gamm
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.