Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Feistel Networks (FN) are now being used massively to encrypt credit card numbers through format-preserving encryption. In our work, we focus on FN with two branches, entirely unknown round functions, modular additions (or other group operations), and when the domain size of a branch (called ) is small. We investigate round-function-recovery attacks. The best known attack so far is an improvement of Meet-In-The-Middle (MITM) attack by Isobe and Shibutani from ASIACRYPT~2013 with optimal data complexity and time complexity , where is the round number in FN. We construct an algorithm with a surprisingly better complexity when is too low, based on partial exhaustive search. When the data complexity varies from the optimal to the one of a codebook attack , our time complexity can reach . It crosses the complexity of the improved MITM for . We also estimate the lowest secure number of rounds depending on and the security goal. We show that the format-preserving-encryption schemes FF1 and FF3 standardized by NIST and ANSI cannot offer 128-bit security (as they are supposed to) for and , respectively (the NIST standard only requires ), and we improve the results by Durak and Vaudenay from CRYPTO~2017.
Florian Frédéric Vincent Breider, Myriam Borgatta