Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Dam safety is strongly linked to the probability of occurrence of large floods. Floods can transport large wood (LW) into reservoirs and towards water release structures as spillways. Due to blocking and clogging, LW may significantly influence the discharge capacity of spillways and thus result in dangerous rise of the water level in the reservoir. For a better assessment of the related risk, the behaviour of LW in contact with hydraulic structures has to be known. Thus the understanding of LW blockage processes at the spillway and the resulting water level rise in the reservoir is important for the safety evaluation of a dam. The aim of the present study is to describe how LW characteristics can influence blocking probabilities at a spillway inlet equipped with piers. By investigating the parameters linked to LW blockage like slenderness and density, or different hydraulic conditions and transport scenarios, it becomes possible to quantify the behaviour and consequences of LW interactions with spillways. Through systematic laboratory experiments, the influence of LW density on blocking probabilities of individual stems is analysed. Experiments were conducted for reservoir approach flow type, implying small magnitudes of reservoir flow velocity. The results were considered statistically as Bernoulli experiments and the methodology applied was a logistic regression. For the combinations explored, a relation between blocking probability and density, among other parameters, is studied.
, ,