An embankment dam is a large artificial dam. It is typically created by the placement and compaction of a complex semi-plastic mound of various compositions of soil or rock. It has a semi-pervious waterproof natural covering for its surface and a dense, impervious core. This makes the dam impervious to surface or seepage erosion. Such a dam is composed of fragmented independent material particles. The friction and interaction of particles binds the particles together into a stable mass rather than by the use of a cementing substance.
Embankment dams come in two types: the earth-filled dam (also called an earthen dam or terrain dam) made of compacted earth, and the rock-filled dam.
A cross-section of an embankment dam shows a shape like a bank, or hill. Most have a central section or core composed of an impermeable material to stop water from seeping through the dam. The core can be of clay, concrete, or asphalt concrete. This type of dam is a good choice for sites with wide valleys. They can be built on hard rock or softer soils. For a rock-fill dam, rock-fill is blasted using explosives to break the rock. Additionally, the rock pieces may need to be crushed into smaller grades to get the right range of size for use in an embankment dam.
Earth-fill dams, also called earthen dams, rolled-earth dams or earth dams, are constructed as a simple embankment of well-compacted earth. A homogeneous rolled-earth dam is entirely constructed of one type of material but may contain a drain layer to collect seep water. A zoned-earth dam has distinct parts or zones of dissimilar material, typically a shell of locally plentiful material with a watertight clay core. Modern zoned-earth embankments employ filter and drain zones to collect and remove seep water and preserve the integrity of the downstream shell zone. An outdated method of zoned earth dam construction used a hydraulic fill to produce a watertight core. Rolled-earth dams may also employ a watertight facing or core in the manner of a rock-fill dam.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A dam is a barrier that stops or restricts the flow of surface water or underground streams. Reservoirs created by dams not only suppress floods but also provide water for activities such as irrigation, human consumption, industrial use, aquaculture, and navigability. Hydropower is often used in conjunction with dams to generate electricity. A dam can also be used to collect or store water which can be evenly distributed between locations.
Concrete is a composite material composed of aggregate bonded together with a fluid cement that cures over time. Concrete is the second-most-used substance in the world after water, and is the most widely used building material. Its usage worldwide, ton for ton, is twice that of steel, wood, plastics, and aluminium combined. When aggregate is mixed with dry Portland cement and water, the mixture forms a fluid slurry that is easily poured and molded into shape.
Les aménagements hydrauliques sont indispensable pour garantir l'approvisionnement en énergie écophile et renouvelable, de même que l'approvisionnement en eau de bonne qualité et en quantité suffisant
Dams are paramount for human development around the world. The course is an introduction to the fascinating domain of dam engineering, from design to construction, for water storage and regulated supp
Le cours donne les bases de la mécanique des sols et des écoulements souterrains. Il aborde les notions de caractérisation expérimentale des sols, les principales théories pour les relations constitut
With more than 220 large dams in operation, compared to its surface of some 41ʹ000 km2, Switzerland has a very large fleet. They were erected to meet various economic and protection needs. Their main assignments concern the storage of water for later use, ...
CRC Press/Balkema2023
,
In Switzerland, hydropower is the main energy source and contributes to about 58.3% of the total production. The 2050 energy strategy aims to increase this share in the coming decades. This increase is a challenge for hydropower plants. The maintenance and ...
Bien que la construction de barrages en général et l’hydraulique des barrages en particulier soient des domaines techniques très développés, le potentiel de risque associé aux barrages justifie dans la plupart des cas la vérification et l’optimisation de l ...