Publication

Cryo-CMOS Electronic Control for Scalable Quantum Computing

Abstract

Quantum computers1 could revolutionize computing in a profound way due to the massive speedup they promise. A quantum computer comprises a cryogenic quantum processor and a classical electronic controller. When scaling up the cryogenic quantum processor to at least a few thousands, and possibly millions, of qubits required for any practical quantum algorithm, cryogenic CMOS (cryo-CMOS) electronics is required to allow feasible and compact interconnections between the controller and the quantum processor. Cryo-CMOS leverages the CMOS fabrication infrastructure while exploiting the continuous improvement of performance and miniaturization guaranteed by Moore's law, in order to enable the fabrication of a cost-effective practical quantum computer. However, designing cryo-CMOS integrated circuits requires a new set of CMOS device models, their embedding in design and verification tools, and the possibility to co-simulate the cryo-CMOS/quantum-processor architecture for full-system optimization. In this paper, we address these challenges by focusing on their impact on the design of complex cryo-CMOS systems.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.