Publication

Turning a normal microscope into a super-resolution instrument using a scanning microlens array

Martinus Gijs, Gergely Huszka
2018
Journal paper
Abstract

We report dielectric microsphere array-based optical super-resolution microscopy. A dielectric microsphere that is placed on a sample is known to generate a virtual image with resolution better than the optical diffraction limit. However, a limitation of such type of super-resolution microscopy is the restricted field-of-view, essentially limited to the central area of the microsphere-generated image. We overcame this limitation by scanning a micro-fabricated array of ordered microspheres over the sample using a customized algorithm that moved step-by-step a motorized stage, meanwhile the microscope-mounted camera was taking pictures at every step. Finally, we stitched together the extracted central parts of the virtual images that showed super-resolution into a mosaic image. We demonstrated 130 nm lateral resolution (~λ/4) and 5 × 105 µm2 scanned surface area using a two by one array of barium titanate glass microspheres in oil-immersion environment. Our findings may serve as a basis for widespread applications of affordable optical super-resolution microscopy.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related concepts (32)
Optical microscope
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast. The object is placed on a stage and may be directly viewed through one or two eyepieces on the microscope.
Super-resolution microscopy
Super-resolution microscopy is a series of techniques in optical microscopy that allow such images to have resolutions higher than those imposed by the diffraction limit, which is due to the diffraction of light. Super-resolution imaging techniques rely on the near-field (photon-tunneling microscopy as well as those that use the Pendry Superlens and near field scanning optical microscopy) or on the far-field.
Super-resolution imaging
Super-resolution imaging (SR) is a class of techniques that enhance (increase) the of an imaging system. In optical SR the diffraction limit of systems is transcended, while in geometrical SR the resolution of digital is enhanced. In some radar and sonar imaging applications (e.g. magnetic resonance imaging (MRI), high-resolution computed tomography), subspace decomposition-based methods (e.g. MUSIC) and compressed sensing-based algorithms (e.g., SAMV) are employed to achieve SR over standard periodogram algorithm.
Show more
Related publications (60)

Compact and effective photon-resolved image scanning microscope

Giorgio Tortarolo

Fluorescence confocal laser-scanning microscopy (LSM) is one of the most popular tools for life science research. This popularity is expected to grow thanks to single-photon array detectors tailored for LSM. These detectors offer unique single-photon spati ...
Spie-Soc Photo-Optical Instrumentation Engineers2024

Practical computational imaging by use of spatiotemporal light modulation: from simulations to applications in biological microscopy

François Thierry M Marelli

Optical microscopy is an essential tool for biologists, who are often faced with the need to overcome the spatial and temporal resolution limitations of their devices to capture finer details. As upgrading imaging hardware is expensive, computational metho ...
EPFL2023

Chemical Probe for Imaging of Polo-like Kinase 4 and Centrioles

Kai Johnsson, Luc Reymond, Georgios Hatzopoulos, Aleksandar Salim

Polo-like kinase (Plk4) is a serine/threonine-proteinkinase thatis essential for biogenesis of the centriole organelle and is enrichedat centrioles. Herein, we introduce Cen-TCO, a chemical probe basedon the Plk4 inhibitor centrinone, to image Plk4 and cen ...
AMER CHEMICAL SOC2023
Show more
Related MOOCs (7)
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Microstructure Fabrication Technologies I
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Micro and Nanofabrication (MEMS)
Learn the fundamentals of microfabrication and nanofabrication by using the most effective techniques in a cleanroom environment.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.