Publication

Convergence Of Variance-Reduced Learning Under Random Reshuffling

Ali H. Sayed, Bicheng Ying, Kun Yuan
2018
Conference paper
Abstract

Several useful variance-reduced stochastic gradient algorithms, such as SVRG, SAGA, Finito, and SAG, have been proposed to minimize empirical risks with linear convergence properties to the exact minimizers. The existing convergence results assume uniform data sampling with replacement. However, it has been observed that random reshuffling can deliver superior performance and, yet, no formal proofs or guarantees of exact convergence exist for variance-reduced algorithms under random reshuffling. This paper makes two contributions. First, it resolves this open issue and provides the first theoretical guarantee of linear convergence under random reshuffling for SAGA; the argument is also adaptable to other variance-reduced algorithms. Second, under random reshuffling, the paper proposes a new amortized variance-reduced gradient (AVRG) algorithm with constant storage requirements compared to SAGA and with balanced gradient computations compared to SVRG. AVRG is also shown analytically to converge linearly.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.