Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Neuromodulators, such as acetylcholine (ACh), control information processing in neural microcircuits by regulating neuronal and synaptic physiology. Computational models and simulations enable predictions on the potential role of ACh in reconfiguring network activity. As a prelude into investigating how the cellular and synaptic effects of ACh collectively influence emergent network dynamics, we developed a data-driven framework incorporating phenomenological models of the physiology of cholinergic modulation of neocortical cells and synapses. The first-draft models were integrated into a biologically detailed tissue model of neocortical microcircuitry to investigate the effects of levels of ACh on diverse neuron types and synapses, and consequently on emergent network activity. Preliminary simulations from the framework, which was not tuned to reproduce any specific ACh-induced network effects, not only corroborate the long-standing notion that ACh desynchronizes spontaneous network activity, but also predict that a dose-dependent activation of ACh gives rise to a spectrum of neocortical network activity. We show that low levels of ACh, such as during non-rapid eye movement (nREM) sleep, drive microcircuit activity into slow oscillations and network synchrony, whereas high ACh concentrations, such as during wakefulness and REM sleep, govern fast oscillations and network asynchrony. In addition, spontaneous network activity modulated by ACh levels shape spike-time cross-correlations across distinct neuronal populations in strikingly different ways. These effects are likely due to the regulation of neurons and synapses caused by increasing levels of ACh, which enhances cellular excitability and decreases the efficacy of local synaptic transmission. We conclude by discussing future directions to refine the biological accuracy of the framework, which will extend its utility and foster the development of hypotheses to investigate the role of neuromodulators in neural information processing.
Matthias Wolf, Henry Markram, Felix Schürmann, Eilif Benjamin Muller, Srikanth Ramaswamy, Michael Reimann, Daniel Keller, Werner Alfons Hilda Van Geit, James Gonzalo King, Pramod Shivaji Kumbhar, Alexis Arnaudon, Jean-Denis Georges Emile Courcol, Rajnish Ranjan, Armando Romani, András Ecker, Michael Emiel Gevaert, Vishal Sood, Sirio Bolaños Puchet, James Bryden Isbister, Judit Planas Carbonell, Daniela Egas Santander, Maria Reva, Genrich Ivaska, Natali Barros Zulaica, Mustafa Anil Tuncel, Christoph Pokorny, Elvis Boci, Jorge Blanco Alonso, Aleksandra Zuzanna Teska, Darshan Mandge, Polina Litvak, Gianluca Ficarelli, Weina Ji, Giuseppe Chindemi, Christian Andreas Rössert, Omar Awile, Joni Henrikki Herttuainen, Samuel Lieven D. Lapere, Thomas Brice Delemontex, Tanguy Pierre Louis Damart, Alexander Dietz
Eilif Benjamin Muller, Michael Reimann, James Gonzalo King, Marwan Muhammad Ahmed Abdellah, Pramod Shivaji Kumbhar, András Ecker, Sirio Bolaños Puchet, James Bryden Isbister, Daniela Egas Santander, Jorge Blanco Alonso, Giuseppe Chindemi, Ioannis Magkanaris