Publication

Search for CP violation in Lambda(0)(b)-> pK(- )and Lambda(0)(b) -> p pi(-) decays

Abstract

A search for CP violation in Lambda(0)(b)-> pK(- )and Lambda(0)(b) -> p pi(-) decays is presented using a sample of pp collisions collected with the LHCb detector and corresponding to an integrated luminosity of 3.0fb(-1). The CP-violating asymmetries are measured to be A(CP)(pK- )( = -0.020 +/- 0.013 +/- 0.019 and A(CP)(p pi-) = -0.035 +/- 0.017 +/- 0.020, and their difference A(CP)(pK-) - A(CP)(p pi-) = 0.014 +/- 0.022 +/- 0.010, where the first uncertainties are statistical and the second systematic. These are the most precise measurements of such asymmetries to date. (C) 2018 The Author(s). Published by Elsevier B.V.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (32)
CP violation
In particle physics, CP violation is a violation of CP-symmetry (or charge conjugation parity symmetry): the combination of C-symmetry (charge symmetry) and P-symmetry (parity symmetry). CP-symmetry states that the laws of physics should be the same if a particle is interchanged with its antiparticle (C-symmetry) while its spatial coordinates are inverted ("mirror" or P-symmetry). The discovery of CP violation in 1964 in the decays of neutral kaons resulted in the Nobel Prize in Physics in 1980 for its discoverers James Cronin and Val Fitch.
Baryon asymmetry
In physical cosmology, the baryon asymmetry problem, also known as the matter asymmetry problem or the matter–antimatter asymmetry problem, is the observed imbalance in baryonic matter (the type of matter experienced in everyday life) and antibaryonic matter in the observable universe. Neither the standard model of particle physics nor the theory of general relativity provides a known explanation for why this should be so, and it is a natural assumption that the universe is neutral with all conserved charges.
LHCb experiment
The LHCb (Large Hadron Collider beauty) experiment is a particle physics detector experiment collecting data at the Large Hadron Collider at CERN. LHCb is a specialized b-physics experiment, designed primarily to measure the parameters of CP violation in the interactions of b-hadrons (heavy particles containing a bottom quark). Such studies can help to explain the matter-antimatter asymmetry of the Universe. The detector is also able to perform measurements of production cross sections, exotic hadron spectroscopy, charm physics and electroweak physics in the forward region.
Show more
Related publications (63)

A study of the K^(+) → π^(0)e^(+)νγ decay

Alessandro Mapelli, Radoslav Marchevski

A sample of 1.3 x 10^(5) K^(+) → π^(0)e^(+)νγ candidates with less than 1% background was collected by the NA62 experiment at the CERN SPS in 2017-2018. Branching fraction measurements are obtained at percent relative precision in three restricted kinemati ...
2023

Search for CP violation in Xi(-)(b) -> pK(-)K(-) decays

Observation of Several Sources of CP Violation in B+ -> pi(+)pi(+)pi(-) Decays

Show more
Related MOOCs (4)
Digital Signal Processing I
Basic signal processing concepts, Fourier analysis and filters. This module can be used as a starting point or a basic refresher in elementary DSP
Digital Signal Processing II
Adaptive signal processing, A/D and D/A. This module provides the basic tools for adaptive filtering and a solid mathematical framework for sampling and quantization
Digital Signal Processing III
Advanced topics: this module covers real-time audio processing (with examples on a hardware board), image processing and communication system design.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.