Publication

Solving puzzles of spontaneously broken spacetime symmetries

Andrey Shkerin
2018
Journal paper
Abstract

We establish a classical analog of the Nambu-Goldstone theorem for spontaneous breaking of spacetime symmetries. It provides a counting rule for independent Nambu-Goldstone fields and states which of them are gapped. We demonstrate that only those symmetry group generators give rise to independent Nambu-Goldstone fields that act nontrivially on a vacuum at the origin of coordinates. Other generators give rise to auxiliary fields that must be excluded from a theory by the means of inverse Higgs constraints. The physical meaning of the inverse Higgs phenomenon and an application of our results to theories of massive gravity are discussed.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related concepts (31)
Goldstone boson
In particle and condensed matter physics, Goldstone bosons or Nambu–Goldstone bosons (NGBs) are bosons that appear necessarily in models exhibiting spontaneous breakdown of continuous symmetries. They were discovered by Yoichiro Nambu in particle physics within the context of the BCS superconductivity mechanism, and subsequently elucidated by Jeffrey Goldstone, and systematically generalized in the context of quantum field theory. In condensed matter physics such bosons are quasiparticles and are known as Anderson–Bogoliubov modes.
Symmetry (physics)
In physics, a symmetry of a physical system is a physical or mathematical feature of the system (observed or intrinsic) that is preserved or remains unchanged under some transformation. A family of particular transformations may be continuous (such as rotation of a circle) or discrete (e.g., reflection of a bilaterally symmetric figure, or rotation of a regular polygon). Continuous and discrete transformations give rise to corresponding types of symmetries.
Symmetry breaking
In physics, symmetry breaking is a phenomenon where a disordered but symmetric state collapses into an ordered, but less symmetric state. This collapse is often one of many possible bifurcations that a particle can take as it approaches a lower energy state. Due to the many possibilities, an observer may assume the result of the collapse to be arbitrary. This phenomenon is fundamental to quantum field theory (QFT), and further, contemporary understandings of physics.
Show more
Related publications (40)

Exact quantum conformal symmetry, its spontaneous breakdown, and gravitational Weyl anomaly

Anna Tokareva

The classical Lagrangian of the Standard Model enjoys the symmetry of the full conformal group if the mass of the Higgs boson is put to zero. This is a hint that conformal symmetry may play a fundamental role in the ultimate theory describing nature. The o ...
AMER PHYSICAL SOC2023

Super-harmonically resonant swirling waves in longitudinally forced circular cylinders

François Gallaire, Alessandro Bongarzone, Alice Evelyne Julienne Marcotte

Resonant sloshing in circular cylinders was studied by Faltinsen et al. (J. Fluid Mech., vol. 804, 2016, pp. 608-645), whose theory was used to describe steady-state resonant waves due to a time-harmonic container's elliptic orbits. In the limit of longitu ...
CAMBRIDGE UNIV PRESS2023

Unraveling looping efficiency of stochastic Cosserat polymers

Raushan Singh, Giulio Corazza

Understanding looping probabilities, including the particular case of ring closure or cyclization, of fluctuating polymers (e.g., DNA) is important in many applications in molecular biology and chemistry. In a continuum limit the configuration of a polymer ...
AMER PHYSICAL SOC2022
Show more