Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
This study aims at evaluating the potential of a wrist-type photoplethysmographic (PPG) device to discriminate between atrial fibrillation (AF) and other types of rhythm. Data from 17 patients undergoing catheter ablation of various arrhythmias were processed. ECGs were used as ground truth and annotated for the following types of rhythm: sinus rhythm (SR), AF, and ventricular arrhythmias (VA). A total of 381/1370/415 10-s epochs were obtained for the three categories, respectively. After pre-processing and removal of segments corresponding to motion artifacts, two different types of feature were derived from the PPG signals: the interbeat interval-based features and the wave-based features, consisting of complexity/organization measures that were computed either from the PPG waveform itself or from its power spectral density. Decision trees were used to assess the discriminative capacity of the proposed features. Three classification schemes were investigated: AF against SR, AF against VA, and AF against (SR&VA). The best results were achieved by combining all features. Accuracies of 98.1/95.9/95.0 %, specificities of 92.4/88.7/92.8 %, and sensitivities of 99.7/98.1/96.2 % were obtained for the three aforementioned classification schemes, respectively.
Alfio Quarteroni, Andrea Manzoni
Jean-Marc Vesin, Vincent Schlageter